Abstract

A photonic preprocessor for analog to digital conversion is demonstrated and characterized using a cavity-less optical pulse source. The pulse source generates high fidelity pulses at 2 GHz repetition rate with temporal width of 3 ps. Chirped pulses are formed by cascaded amplitude and phase modulators, and subsequently compressed in dispersion compensating fiber. Sampling operation is performed with a dual-output Mach-Zehnder modulator, where the complimentary output enables a reduction of noise by 3 dB. Phase noise characterization shows that the phase noise of the generated pulses is fully dictated by the RF source. The high quality of the pulse source used in a sampling preprocessor experiment was verified by measuring 8 effective number of bits at 10 GHz and 7.0 effective number of bits at 40 GHz.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Bouvier, A. Ouslimani, A. Konczykowska, and J. Godin, “A 1-gsample/s, 15-GHz input bandwidth master–slave track-and-hold amplifier in inp dhbt technology,” IEEE Trans. Microw. Theory Tech.57(12), 3181–3187 (2009).
    [CrossRef]
  2. S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
    [CrossRef]
  3. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express15(5), 1955–1982 (2007).
    [CrossRef] [PubMed]
  4. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
    [CrossRef]
  5. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express20(4), 4454–4469 (2012).
    [CrossRef] [PubMed]
  6. T. L. Koch and R. C. Alferness, “Dispersion compensation by active predistorted signal synthesis,” J. Lightwave Technol.3(4), 800–805 (1985).
    [CrossRef]
  7. J. J. Veselka and S. K. Korotky, “Pulse generation for soliton systems using lithium niobate modulators,” IEEE J. Sel. Top. Quantum Electron.2(2), 300–310 (1996).
    [CrossRef]
  8. A. O. J. Wiberg, C.-S. Brès, B. P.-P. Kuo, E. Myslivets, and S. Radic, “Cavity-less 40 GHz pulse source tunable over 95 nm,” in Proc. ECOC’09, paper 5.2.3 (2009).
  9. A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, and S. Radic, “640-Gb/s Transmitter and Self-Tracked Demultiplexing Receiver Using Single Parametric Gate,” IEEE Photon. Technol. Lett.23(8), 507–509 (2011).
    [CrossRef]
  10. A. O. J. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, N. Alic, and S. Radic, “Cavity-less pulse source based optical sampled ADC,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), Mo.2.A.3.
  11. I. E. E. E. Std, 1241–2000, (IEEE, Inc., New York, NY, USA, 2001).
  12. E. Ackerman, S. Wanuga, J. MacDonald, and J. Prince, “Balanced receiver external modulation fiber-optic link architecture with reduced noise figure,” IEEE MTT-S Int. Microw. Symp. Dig.2, 723–726 (1993).
    [CrossRef]
  13. K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link,” J. Lightwave Technol.16(2), 192–199 (1998).
    [CrossRef]
  14. Agilent X-series signal analyzer manual, “N9068A & W9068A Phase Noise Measurement Application Measurement Guide,” (Agilent Technologies, 2012). http://cp.literature.agilent.com/litweb/pdf/N9068-90011.pdf .
  15. T. D. Gathman and J. F. Buckwalter, “An integrate-and-dump receiver for high dynamic range photonic analog-to-digital conversion,” in Proc. IEEE 12th Topical Meeting Silicon Monolithic Integrated Circuits in RF Systems (SiRF), TU1C–4 (2012).
  16. F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circ. Syst.38(8), 958–961 (1991).
    [CrossRef]
  17. V. Ataie, E. Myslivets, A. O. J. Wiberg, B. P. P. Kuo, N. Alic, and S. Radic, “Linearization of copy-and-sample photonics analog to digital converter based on a multidimensional look-up table,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2B.6.

2012

2011

A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, and S. Radic, “640-Gb/s Transmitter and Self-Tracked Demultiplexing Receiver Using Single Parametric Gate,” IEEE Photon. Technol. Lett.23(8), 507–509 (2011).
[CrossRef]

2009

Y. Bouvier, A. Ouslimani, A. Konczykowska, and J. Godin, “A 1-gsample/s, 15-GHz input bandwidth master–slave track-and-hold amplifier in inp dhbt technology,” IEEE Trans. Microw. Theory Tech.57(12), 3181–3187 (2009).
[CrossRef]

2007

2006

S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
[CrossRef]

2001

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
[CrossRef]

1998

1996

J. J. Veselka and S. K. Korotky, “Pulse generation for soliton systems using lithium niobate modulators,” IEEE J. Sel. Top. Quantum Electron.2(2), 300–310 (1996).
[CrossRef]

1993

E. Ackerman, S. Wanuga, J. MacDonald, and J. Prince, “Balanced receiver external modulation fiber-optic link architecture with reduced noise figure,” IEEE MTT-S Int. Microw. Symp. Dig.2, 723–726 (1993).
[CrossRef]

1991

F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circ. Syst.38(8), 958–961 (1991).
[CrossRef]

1985

T. L. Koch and R. C. Alferness, “Dispersion compensation by active predistorted signal synthesis,” J. Lightwave Technol.3(4), 800–805 (1985).
[CrossRef]

Ackerman, E.

E. Ackerman, S. Wanuga, J. MacDonald, and J. Prince, “Balanced receiver external modulation fiber-optic link architecture with reduced noise figure,” IEEE MTT-S Int. Microw. Symp. Dig.2, 723–726 (1993).
[CrossRef]

Alferness, R. C.

T. L. Koch and R. C. Alferness, “Dispersion compensation by active predistorted signal synthesis,” J. Lightwave Technol.3(4), 800–805 (1985).
[CrossRef]

Alic, N.

A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, and S. Radic, “640-Gb/s Transmitter and Self-Tracked Demultiplexing Receiver Using Single Parametric Gate,” IEEE Photon. Technol. Lett.23(8), 507–509 (2011).
[CrossRef]

Baringer, C.

S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
[CrossRef]

Betts, G. E.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
[CrossRef]

Bouvier, Y.

Y. Bouvier, A. Ouslimani, A. Konczykowska, and J. Godin, “A 1-gsample/s, 15-GHz input bandwidth master–slave track-and-hold amplifier in inp dhbt technology,” IEEE Trans. Microw. Theory Tech.57(12), 3181–3187 (2009).
[CrossRef]

Brès, C.-S.

A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, and S. Radic, “640-Gb/s Transmitter and Self-Tracked Demultiplexing Receiver Using Single Parametric Gate,” IEEE Photon. Technol. Lett.23(8), 507–509 (2011).
[CrossRef]

Byun, H.

Chen, J.

Cosand, A. E.

S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
[CrossRef]

Crampton, D.

S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
[CrossRef]

Dahlem, M. S.

DiLello, N. A.

Esman, R. D.

Geis, M. W.

Godin, J.

Y. Bouvier, A. Ouslimani, A. Konczykowska, and J. Godin, “A 1-gsample/s, 15-GHz input bandwidth master–slave track-and-hold amplifier in inp dhbt technology,” IEEE Trans. Microw. Theory Tech.57(12), 3181–3187 (2009).
[CrossRef]

Grein, M. E.

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
[CrossRef]

Hitko, D. A.

S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
[CrossRef]

Holzwarth, C. W.

Hoyt, J. L.

Hummels, D. M.

F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circ. Syst.38(8), 958–961 (1991).
[CrossRef]

Ippen, E. P.

Irons, F. H.

F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circ. Syst.38(8), 958–961 (1991).
[CrossRef]

Jensen, J. F.

S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
[CrossRef]

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
[CrossRef]

Kärtner, F. X.

Kennedy, S. P.

F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circ. Syst.38(8), 958–961 (1991).
[CrossRef]

Khilo, A.

Koch, T. L.

T. L. Koch and R. C. Alferness, “Dispersion compensation by active predistorted signal synthesis,” J. Lightwave Technol.3(4), 800–805 (1985).
[CrossRef]

Konczykowska, A.

Y. Bouvier, A. Ouslimani, A. Konczykowska, and J. Godin, “A 1-gsample/s, 15-GHz input bandwidth master–slave track-and-hold amplifier in inp dhbt technology,” IEEE Trans. Microw. Theory Tech.57(12), 3181–3187 (2009).
[CrossRef]

Korotky, S. K.

J. J. Veselka and S. K. Korotky, “Pulse generation for soliton systems using lithium niobate modulators,” IEEE J. Sel. Top. Quantum Electron.2(2), 300–310 (1996).
[CrossRef]

Kuo, B. P.-P.

A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, and S. Radic, “640-Gb/s Transmitter and Self-Tracked Demultiplexing Receiver Using Single Parametric Gate,” IEEE Photon. Technol. Lett.23(8), 507–509 (2011).
[CrossRef]

Li, C.-M.

S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
[CrossRef]

Lin, C.-M.

S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
[CrossRef]

Luh, L.

S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
[CrossRef]

Lyszczarz, T. M.

MacDonald, J.

E. Ackerman, S. Wanuga, J. MacDonald, and J. Prince, “Balanced receiver external modulation fiber-optic link architecture with reduced noise figure,” IEEE MTT-S Int. Microw. Symp. Dig.2, 723–726 (1993).
[CrossRef]

Morton, S. L.

S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
[CrossRef]

Motamedi, A.

Nejadmalayeri, A. H.

Nichols, L. T.

O'Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
[CrossRef]

Orcutt, J. S.

Ouslimani, A.

Y. Bouvier, A. Ouslimani, A. Konczykowska, and J. Godin, “A 1-gsample/s, 15-GHz input bandwidth master–slave track-and-hold amplifier in inp dhbt technology,” IEEE Trans. Microw. Theory Tech.57(12), 3181–3187 (2009).
[CrossRef]

Peng, M. Y.

Perrott, M.

Popovic, M. A.

Prince, J.

E. Ackerman, S. Wanuga, J. MacDonald, and J. Prince, “Balanced receiver external modulation fiber-optic link architecture with reduced noise figure,” IEEE MTT-S Int. Microw. Symp. Dig.2, 723–726 (1993).
[CrossRef]

Radic, S.

A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, and S. Radic, “640-Gb/s Transmitter and Self-Tracked Demultiplexing Receiver Using Single Parametric Gate,” IEEE Photon. Technol. Lett.23(8), 507–509 (2011).
[CrossRef]

Ram, R. J.

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
[CrossRef]

Sander, M. Y.

Smith, H. I.

Sorace-Agaskar, C. M.

Spector, S. J.

Sun, J.

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
[CrossRef]

Valley, G. C.

Veselka, J. J.

J. J. Veselka and S. K. Korotky, “Pulse generation for soliton systems using lithium niobate modulators,” IEEE J. Sel. Top. Quantum Electron.2(2), 300–310 (1996).
[CrossRef]

Wang, J. P.

Wanuga, S.

E. Ackerman, S. Wanuga, J. MacDonald, and J. Prince, “Balanced receiver external modulation fiber-optic link architecture with reduced noise figure,” IEEE MTT-S Int. Microw. Symp. Dig.2, 723–726 (1993).
[CrossRef]

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
[CrossRef]

Wiberg, A. O. J.

A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, and S. Radic, “640-Gb/s Transmitter and Self-Tracked Demultiplexing Receiver Using Single Parametric Gate,” IEEE Photon. Technol. Lett.23(8), 507–509 (2011).
[CrossRef]

Williams, K. J.

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
[CrossRef]

Yoon, J. U.

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
[CrossRef]

Zhou, G.-R.

Electron. Lett.

S. L. Morton, A. E. Cosand, D. A. Hitko, C. Baringer, L. Luh, C.-M. Lin, J. F. Jensen, C.-M. Li, and D. Crampton, “Ku-band subsampling track-and-hold amplifier with 8 enob resolution,” Electron. Lett.42(8), 459–460 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. J. Veselka and S. K. Korotky, “Pulse generation for soliton systems using lithium niobate modulators,” IEEE J. Sel. Top. Quantum Electron.2(2), 300–310 (1996).
[CrossRef]

IEEE MTT-S Int. Microw. Symp. Dig.

E. Ackerman, S. Wanuga, J. MacDonald, and J. Prince, “Balanced receiver external modulation fiber-optic link architecture with reduced noise figure,” IEEE MTT-S Int. Microw. Symp. Dig.2, 723–726 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

A. O. J. Wiberg, B. P.-P. Kuo, C.-S. Brès, N. Alic, and S. Radic, “640-Gb/s Transmitter and Self-Tracked Demultiplexing Receiver Using Single Parametric Gate,” IEEE Photon. Technol. Lett.23(8), 507–509 (2011).
[CrossRef]

IEEE Trans. Circ. Syst.

F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circ. Syst.38(8), 958–961 (1991).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

Y. Bouvier, A. Ouslimani, A. Konczykowska, and J. Godin, “A 1-gsample/s, 15-GHz input bandwidth master–slave track-and-hold amplifier in inp dhbt technology,” IEEE Trans. Microw. Theory Tech.57(12), 3181–3187 (2009).
[CrossRef]

P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech.49(10), 1840–1853 (2001).
[CrossRef]

J. Lightwave Technol.

K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link,” J. Lightwave Technol.16(2), 192–199 (1998).
[CrossRef]

T. L. Koch and R. C. Alferness, “Dispersion compensation by active predistorted signal synthesis,” J. Lightwave Technol.3(4), 800–805 (1985).
[CrossRef]

Opt. Express

Other

V. Ataie, E. Myslivets, A. O. J. Wiberg, B. P. P. Kuo, N. Alic, and S. Radic, “Linearization of copy-and-sample photonics analog to digital converter based on a multidimensional look-up table,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2B.6.

Agilent X-series signal analyzer manual, “N9068A & W9068A Phase Noise Measurement Application Measurement Guide,” (Agilent Technologies, 2012). http://cp.literature.agilent.com/litweb/pdf/N9068-90011.pdf .

T. D. Gathman and J. F. Buckwalter, “An integrate-and-dump receiver for high dynamic range photonic analog-to-digital conversion,” in Proc. IEEE 12th Topical Meeting Silicon Monolithic Integrated Circuits in RF Systems (SiRF), TU1C–4 (2012).

A. O. J. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, N. Alic, and S. Radic, “Cavity-less pulse source based optical sampled ADC,” in European Conference and Exhibition on Optical Communication (ECOC) (Optical Society of America, Washington, DC, 2012), Mo.2.A.3.

I. E. E. E. Std, 1241–2000, (IEEE, Inc., New York, NY, USA, 2001).

A. O. J. Wiberg, C.-S. Brès, B. P.-P. Kuo, E. Myslivets, and S. Radic, “Cavity-less 40 GHz pulse source tunable over 95 nm,” in Proc. ECOC’09, paper 5.2.3 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic overview of the principle of the cavity-less pulse source.

Fig. 2
Fig. 2

Experimental setup. LD: lasers diode, EDFA: Erbium doped fiber amplifier, PPG: Pulse pattern generator PM: phase modulator, PS: Phase shifter, MZM: Mach-Zehnder modulator

Fig. 3
Fig. 3

Example of the received signal samples under different sampling conditions: Nyquist sampling fs/2>fsig (blue line and green squares), and sub-rate sampling fs<<fsig (red dots).

Fig. 4
Fig. 4

Setup of sampling experiment. DO-MZM: Dual-output Mach-Zehnder modulator, PD: Photo diode, LP: low pass filter.

Fig. 5
Fig. 5

Optical sampling oscilloscope captures of signals generated by pulse source (a) 8 GHz chirped pulses before compression, (b) 8 GHz compressed pulses and (c) 2 GHz compressed pulses.

Fig. 6
Fig. 6

Phase noise measurement of the RF-source at 8 GHz and the pulse source at 8 and 2 GHz, respectively.

Fig. 7
Fig. 7

ADC front-end low-pass filter (LP1) bandwidth optimization.

Fig. 8
Fig. 8

(a) Time domain signal of the two DO-MZM outputs, (b) FFT of the two DO-MZM outputs, and (c) FFT of the two channels combined of 10.202 GHz input.

Fig. 9
Fig. 9

FFT of the two channels combined with signal having a frequency at (a) 0.202 GHz, (b) 1.798 GHz, (c) 14.202 GHz, (d) 20.202 GHz, (e) 30.202 GHz, and (f) 40.202 GHz.

Fig. 10
Fig. 10

ENOB and SNR limited ENOB as a function of signal frequency for the photonic preprocessor sub-rate sampled ADC operating at 2 GS/s.

Fig. 11
Fig. 11

Capture of 1-ms-pulse modulated 40.201 GHz carrier using the photonic preprocessor at 2 GS/s.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f rec =| f sig N f s |,
N= | f sig f s 1 2 | .

Metrics