Abstract

We have investigated an all-optical set/reset and latching operation using a monolithically integrated InP-based semiconductor optical amplifier type Mach-Zehnder interferometer with a feedback loop. In simulation, operation conditions when both set and reset are possible was estimated for input light pulse with a FWHM of 31 and 12.5 ps, and the tolerance of the CW probe light and feedback loop loss becomes large with increasing the input light pulse power. In addition, the loop length could be longer than the distance of the light propagating in one bit pulse because of the longer carrier recovery time than one bit time duration. Moreover, we successfully achieved set/reset operation with 34- and 18-ps wide set/reset pulses.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Blumenthal, P. Prucnal, and J. Sauer, “Photonic packet switches: Architectures and experimental implementations,” Proc. IEEE82(11), 1650–1667 (1994).
    [CrossRef]
  2. S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,” IEEE Photon. Technol. Lett.14(8), 1211–1213 (2002).
    [CrossRef]
  3. R. Takahashi and H. Suzuki, “1-Tb/s 16-b all-optical serial-to-parallel conversion using a surface-reflection optical switch,” IEEE Photon. Technol. Lett.15(2), 287–289 (2003).
    [CrossRef]
  4. N. Wada, H. Harai, and F. Kubota, “Optical packet switching network based on ultra-fast optical code label processing,” IEICE Trans. Electron.E87-C(7), 1090–1096 (2004).
  5. H. Furukawa, N. Wada, and T. Miyazaki, “640 Gbit/s (64-wavelength 10 Gbit/s) data-rate wide-colored NRZ-DPSK optical packet switching and buffering demonstration,” J. Lightwave Technol.28(4), 336–343 (2010).
    [CrossRef]
  6. H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diode (Artech House Optoelectronics Library, Boston, MA, 1994).
  7. H. Uenohara, Y. Kawamura, and H. Iwamura, “Long wavelength multiple quantum well voltage-controlled bistable laser diodes,” IEEE J. Quantum Electron.31(12), 2142–2147 (1995).
    [CrossRef]
  8. K. Takeda, M. Takenaka, T. Tanemura, and Y. Nakano, “Experimental study on wavelength tenability of all-optical flip-flop based on multimode-interference bistable laser diode,” IEEE Photon. J.1(1), 40–47 (2009).
    [CrossRef]
  9. R. Kumar, K. Huybrechts, L. Liu, T. Spuessens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Bates, and G. Morthier, “An ultra-small, low-power all-optical flip-flop memory on a silicon chip,” in Conference on Optical Fiber Communication Conference2010(OFC2010), Technical digest (CD) (Optical Society of America 2010), paper OTuN7.
  10. T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett.88(10), 101102 (2006).
    [CrossRef]
  11. R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett.17(4), 843–845 (2005).
    [CrossRef]
  12. K. Vyrsokinos, P. Bakopoulos, D. Fitsios, T. Alexoudi, D. Apostolopoulos, H. Avramopoulos, A. Miliou, and N. Pleros, “All-optical T flip flop using a single SOA-MZI and a feedback loop,” in Proceeding of 37th European Conference and Exhibition on Optical Communication (ECOC2011), paper We.10.P1.37.
  13. H. Brahami, M. Bougioukos, M. Menif, A. Maziotid, C. Stamatiadis, Ch. Kouloumentas, D. Apostolopoulos, H. Avramopoulos, and D. Erasme, “Experimental Demonstration of an All-Optical Packet Forwarding Gate Based on a Single SOA-MZI at 40Gb/s,” in Conference on Optical Fiber Communication Conference2011(OFC2011), Technical digest (CD) (Optical Society of America 2011),paper OMK5.
  14. S. Shimizu and H. Uenohara, “A proposal of a novel gain profile model of multi-quantum-well semiconductor optical amplifiers,” Jpn. J. Appl. Phys.49(3), 030204 (2010).
    [CrossRef]

2010 (2)

H. Furukawa, N. Wada, and T. Miyazaki, “640 Gbit/s (64-wavelength 10 Gbit/s) data-rate wide-colored NRZ-DPSK optical packet switching and buffering demonstration,” J. Lightwave Technol.28(4), 336–343 (2010).
[CrossRef]

S. Shimizu and H. Uenohara, “A proposal of a novel gain profile model of multi-quantum-well semiconductor optical amplifiers,” Jpn. J. Appl. Phys.49(3), 030204 (2010).
[CrossRef]

2009 (1)

K. Takeda, M. Takenaka, T. Tanemura, and Y. Nakano, “Experimental study on wavelength tenability of all-optical flip-flop based on multimode-interference bistable laser diode,” IEEE Photon. J.1(1), 40–47 (2009).
[CrossRef]

2006 (1)

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett.88(10), 101102 (2006).
[CrossRef]

2005 (1)

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett.17(4), 843–845 (2005).
[CrossRef]

2004 (1)

N. Wada, H. Harai, and F. Kubota, “Optical packet switching network based on ultra-fast optical code label processing,” IEICE Trans. Electron.E87-C(7), 1090–1096 (2004).

2003 (1)

R. Takahashi and H. Suzuki, “1-Tb/s 16-b all-optical serial-to-parallel conversion using a surface-reflection optical switch,” IEEE Photon. Technol. Lett.15(2), 287–289 (2003).
[CrossRef]

2002 (1)

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,” IEEE Photon. Technol. Lett.14(8), 1211–1213 (2002).
[CrossRef]

1995 (1)

H. Uenohara, Y. Kawamura, and H. Iwamura, “Long wavelength multiple quantum well voltage-controlled bistable laser diodes,” IEEE J. Quantum Electron.31(12), 2142–2147 (1995).
[CrossRef]

1994 (1)

D. Blumenthal, P. Prucnal, and J. Sauer, “Photonic packet switches: Architectures and experimental implementations,” Proc. IEEE82(11), 1650–1667 (1994).
[CrossRef]

Blumenthal, D.

D. Blumenthal, P. Prucnal, and J. Sauer, “Photonic packet switches: Architectures and experimental implementations,” Proc. IEEE82(11), 1650–1667 (1994).
[CrossRef]

Cao, J.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,” IEEE Photon. Technol. Lett.14(8), 1211–1213 (2002).
[CrossRef]

Clavero, R.

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett.17(4), 843–845 (2005).
[CrossRef]

Furukawa, H.

Harai, H.

N. Wada, H. Harai, and F. Kubota, “Optical packet switching network based on ultra-fast optical code label processing,” IEICE Trans. Electron.E87-C(7), 1090–1096 (2004).

Iwamura, H.

H. Uenohara, Y. Kawamura, and H. Iwamura, “Long wavelength multiple quantum well voltage-controlled bistable laser diodes,” IEEE J. Quantum Electron.31(12), 2142–2147 (1995).
[CrossRef]

Kamei, S.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,” IEEE Photon. Technol. Lett.14(8), 1211–1213 (2002).
[CrossRef]

Kawaguchi, H.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett.88(10), 101102 (2006).
[CrossRef]

Kawamura, Y.

H. Uenohara, Y. Kawamura, and H. Iwamura, “Long wavelength multiple quantum well voltage-controlled bistable laser diodes,” IEEE J. Quantum Electron.31(12), 2142–2147 (1995).
[CrossRef]

Kubota, F.

N. Wada, H. Harai, and F. Kubota, “Optical packet switching network based on ultra-fast optical code label processing,” IEICE Trans. Electron.E87-C(7), 1090–1096 (2004).

Lee, H. J.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,” IEEE Photon. Technol. Lett.14(8), 1211–1213 (2002).
[CrossRef]

Marti, J.

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett.17(4), 843–845 (2005).
[CrossRef]

Martinez, J. M.

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett.17(4), 843–845 (2005).
[CrossRef]

Miyazaki, T.

Mori, T.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett.88(10), 101102 (2006).
[CrossRef]

Nakano, Y.

K. Takeda, M. Takenaka, T. Tanemura, and Y. Nakano, “Experimental study on wavelength tenability of all-optical flip-flop based on multimode-interference bistable laser diode,” IEEE Photon. J.1(1), 40–47 (2009).
[CrossRef]

Okamoto, K.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,” IEEE Photon. Technol. Lett.14(8), 1211–1213 (2002).
[CrossRef]

Pan, Z.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,” IEEE Photon. Technol. Lett.14(8), 1211–1213 (2002).
[CrossRef]

Prucnal, P.

D. Blumenthal, P. Prucnal, and J. Sauer, “Photonic packet switches: Architectures and experimental implementations,” Proc. IEEE82(11), 1650–1667 (1994).
[CrossRef]

Ramos, F.

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett.17(4), 843–845 (2005).
[CrossRef]

Sauer, J.

D. Blumenthal, P. Prucnal, and J. Sauer, “Photonic packet switches: Architectures and experimental implementations,” Proc. IEEE82(11), 1650–1667 (1994).
[CrossRef]

Shimizu, S.

S. Shimizu and H. Uenohara, “A proposal of a novel gain profile model of multi-quantum-well semiconductor optical amplifiers,” Jpn. J. Appl. Phys.49(3), 030204 (2010).
[CrossRef]

Suzuki, H.

R. Takahashi and H. Suzuki, “1-Tb/s 16-b all-optical serial-to-parallel conversion using a surface-reflection optical switch,” IEEE Photon. Technol. Lett.15(2), 287–289 (2003).
[CrossRef]

Takahashi, R.

R. Takahashi and H. Suzuki, “1-Tb/s 16-b all-optical serial-to-parallel conversion using a surface-reflection optical switch,” IEEE Photon. Technol. Lett.15(2), 287–289 (2003).
[CrossRef]

Takeda, K.

K. Takeda, M. Takenaka, T. Tanemura, and Y. Nakano, “Experimental study on wavelength tenability of all-optical flip-flop based on multimode-interference bistable laser diode,” IEEE Photon. J.1(1), 40–47 (2009).
[CrossRef]

Takenaka, M.

K. Takeda, M. Takenaka, T. Tanemura, and Y. Nakano, “Experimental study on wavelength tenability of all-optical flip-flop based on multimode-interference bistable laser diode,” IEEE Photon. J.1(1), 40–47 (2009).
[CrossRef]

Tanemura, T.

K. Takeda, M. Takenaka, T. Tanemura, and Y. Nakano, “Experimental study on wavelength tenability of all-optical flip-flop based on multimode-interference bistable laser diode,” IEEE Photon. J.1(1), 40–47 (2009).
[CrossRef]

Uenohara, H.

S. Shimizu and H. Uenohara, “A proposal of a novel gain profile model of multi-quantum-well semiconductor optical amplifiers,” Jpn. J. Appl. Phys.49(3), 030204 (2010).
[CrossRef]

H. Uenohara, Y. Kawamura, and H. Iwamura, “Long wavelength multiple quantum well voltage-controlled bistable laser diodes,” IEEE J. Quantum Electron.31(12), 2142–2147 (1995).
[CrossRef]

Wada, N.

H. Furukawa, N. Wada, and T. Miyazaki, “640 Gbit/s (64-wavelength 10 Gbit/s) data-rate wide-colored NRZ-DPSK optical packet switching and buffering demonstration,” J. Lightwave Technol.28(4), 336–343 (2010).
[CrossRef]

N. Wada, H. Harai, and F. Kubota, “Optical packet switching network based on ultra-fast optical code label processing,” IEICE Trans. Electron.E87-C(7), 1090–1096 (2004).

Yamayoshi, Y.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett.88(10), 101102 (2006).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,” IEEE Photon. Technol. Lett.14(8), 1211–1213 (2002).
[CrossRef]

Zhang, Y.

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,” IEEE Photon. Technol. Lett.14(8), 1211–1213 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett.88(10), 101102 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Uenohara, Y. Kawamura, and H. Iwamura, “Long wavelength multiple quantum well voltage-controlled bistable laser diodes,” IEEE J. Quantum Electron.31(12), 2142–2147 (1995).
[CrossRef]

IEEE Photon. J. (1)

K. Takeda, M. Takenaka, T. Tanemura, and Y. Nakano, “Experimental study on wavelength tenability of all-optical flip-flop based on multimode-interference bistable laser diode,” IEEE Photon. J.1(1), 40–47 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, “All-optical flip-flop based on a single SOA-MZI,” IEEE Photon. Technol. Lett.17(4), 843–845 (2005).
[CrossRef]

S. J. B. Yoo, H. J. Lee, Z. Pan, J. Cao, Y. Zhang, K. Okamoto, and S. Kamei, “Rapidly switching all-optical packet routing system with optical-label swapping incorporating tunable wavelength conversion and a uniform-loss cyclic frequency AWGR,” IEEE Photon. Technol. Lett.14(8), 1211–1213 (2002).
[CrossRef]

R. Takahashi and H. Suzuki, “1-Tb/s 16-b all-optical serial-to-parallel conversion using a surface-reflection optical switch,” IEEE Photon. Technol. Lett.15(2), 287–289 (2003).
[CrossRef]

IEICE Trans. Electron. (1)

N. Wada, H. Harai, and F. Kubota, “Optical packet switching network based on ultra-fast optical code label processing,” IEICE Trans. Electron.E87-C(7), 1090–1096 (2004).

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

S. Shimizu and H. Uenohara, “A proposal of a novel gain profile model of multi-quantum-well semiconductor optical amplifiers,” Jpn. J. Appl. Phys.49(3), 030204 (2010).
[CrossRef]

Proc. IEEE (1)

D. Blumenthal, P. Prucnal, and J. Sauer, “Photonic packet switches: Architectures and experimental implementations,” Proc. IEEE82(11), 1650–1667 (1994).
[CrossRef]

Other (4)

R. Kumar, K. Huybrechts, L. Liu, T. Spuessens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Bates, and G. Morthier, “An ultra-small, low-power all-optical flip-flop memory on a silicon chip,” in Conference on Optical Fiber Communication Conference2010(OFC2010), Technical digest (CD) (Optical Society of America 2010), paper OTuN7.

H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diode (Artech House Optoelectronics Library, Boston, MA, 1994).

K. Vyrsokinos, P. Bakopoulos, D. Fitsios, T. Alexoudi, D. Apostolopoulos, H. Avramopoulos, A. Miliou, and N. Pleros, “All-optical T flip flop using a single SOA-MZI and a feedback loop,” in Proceeding of 37th European Conference and Exhibition on Optical Communication (ECOC2011), paper We.10.P1.37.

H. Brahami, M. Bougioukos, M. Menif, A. Maziotid, C. Stamatiadis, Ch. Kouloumentas, D. Apostolopoulos, H. Avramopoulos, and D. Erasme, “Experimental Demonstration of an All-Optical Packet Forwarding Gate Based on a Single SOA-MZI at 40Gb/s,” in Conference on Optical Fiber Communication Conference2011(OFC2011), Technical digest (CD) (Optical Society of America 2011),paper OMK5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Structure of a monolithically integrated SOA-MZI with a feedback loop. (a) Schematic (b) photograph.

Fig. 2
Fig. 2

Operation status of the SOA-MZI with a feedbacks of the SOA-MZI with a feedback loop with a set pulse width of 31ps and a peak power of + 3dBm. Each case indicates a reset pulse peak power of (a) + 3dBm (b) + 6dBm, and (c) + 9dBm, respectively. Blue rectangle, red circle, and green triangle represents the operation conditions when reset is not possible, both set and reset are possible, and set is not possible.

Fig. 3
Fig. 3

Operation status of the SOA-MZI with a feedbacks of the SOA-MZI with a feedback loop with a set pulse width of 31ps and a peak power of + 6dBm. Each case indicates a reset pulse peak power of (a) + 3dBm (b) + 6dBm, and (c) + 9dBm, respectively. Blue rectangle, red circle, and green triangle represents the operation conditions when reset is not possible, both set and reset are possible, and set is not possible.

Fig. 4
Fig. 4

Operation status of the SOA-MZI with a feedbacks of the SOA-MZI with a feedback loop with a set pulse width of 31ps and a peak power of + 9dBm. Each case indicates a reset pulse peak power of (a) + 3dBm (b) + 6dBm, and (c) + 9dBm, respectively. Waveforms of (d), (e), and (f) indicate the signal under the conditions of (1), (2), and (3) in (c). Blue rectangle, red circle, and green triangle represents the operation conditions when reset is not possible, both set and reset are possible, and set is not possible.

Fig. 5
Fig. 5

Operation status of the SOA-MZI with a feedback of the SOA-MZI with a feedback loop with a set pulse width of 12.5ps and a peak power of + 6dBm. Each case indicates a loop delay of (a) 10ps (b) 20ps, and (c) 30ps, respectively. Blue rectangle, red circle, and green triangle represents the operation state of reset not possible, both set and reset possible, and set not possible.

Fig. 6
Fig. 6

Operation status of the SOA-MZI with a feedback of the SOA-MZI with a feedback loop with a set pulse width of 12.5ps and a peak power of + 12dBm. Each case indicates a loop delay of (a) 10ps (b) 20ps, (c) 30ps, and (d) 40ps, respectively. Blue rectangle, red circle, and green triangle represents the operation state of reset not possible, both set and reset possible, and set not possible.

Fig. 7
Fig. 7

Experimental setup for all-optical set/reset and latching operation.

Fig. 8
Fig. 8

Waveforms of all-optical set/reset and latching operation. (left) experimental results (a) set pulse (b) reset pulse (c) output of a SOA-MZI with a feedback loop (right) simulation results (d) set pulse (e) reset pulse (f) output of a SOA-MZI with a feedback loop

Fig. 9
Fig. 9

Output waveforms of a SOA-MZI with a feedback loop with a CW probe power of (a) + 4.9dBm, (b) + 4.4dBm, (c) + 3.9dBm, (d) + 3.4dBm, and (e) + 0.4dBm.

Fig. 10
Fig. 10

Output waveforms of a SOA-MZI with a feedback loop with a SOA6 bias current of (a) 5.0mA, (b) 10.0mA, (c) 20.0mA, and (d) 25.0mA.

Fig. 11
Fig. 11

Experimental results for a input pulse width of 18ps. (a) Set pulse (b) reset pulse (c) output from a SOA-MZI with a feedback loop (d) magnified image of a set/reset pulse (e) leading edge (f) trailing edge.

Tables (1)

Tables Icon

Table 1 Parameters used in simulations.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A u (z,t) z + 1 υ g A u (z,t) t = j 2 αΓ g m u A u (z,t)+ 1 2 g u A u (z,t)
N i t = I eV N i ( c 1 + c 2 N i + c 3 N i 2 ) i=1 2 υ g Γ g m u,i S u,i
S u,i = | A u,i | 2 + | A u,i+1 | 2 + | B u,i | 2 + | B u,i+1 | 2 2 υ g E u A cross
g m,i ( N i , λ u )= g p p ( λ u λ p ) 2 +c ( λ u λ p ) 3 1+ε( S 1,i + S 2,i )
g i =Γ( g m,i α active )(1Γ) α clad α scat
α= 4π λ ( dn dN )/( dg dN )

Metrics