Abstract

An InAs/GaAs quantum dot laser on a Si rib structure has been demonstrated. The double heterostructure laser structure grown on a GaAs substrate is layer-transferred onto a patterned Si substrate by GaAs/Si direct wafer bonding without oxide or metal mediation. This Fabry-Perot laser operates with current injection through the GaAs/Si rib interface and exhibits InAs quantum dot ground state lasing at 1.28 μm at room temperature, with a threshold current density of 480 A cm−2.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electric chips,” Proc. IEEE88(6), 728–749 (2000).
    [CrossRef]
  2. Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, and Y. Arakawa, “First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate,” Opt. Express19(26), B159–B165 (2011).
    [CrossRef] [PubMed]
  3. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982).
    [CrossRef]
  4. Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
    [CrossRef]
  5. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express19(12), 11381–11386 (2011).
    [CrossRef] [PubMed]
  6. H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
    [CrossRef]
  7. M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
    [CrossRef]
  8. Q.-Y. Tong and U. Gosele, Semiconductor wafer bonding: Science and technology (Wiley, New Jersey, 1998).
  9. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
    [CrossRef] [PubMed]
  10. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  11. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express15(11), 6744–6749 (2007).
    [CrossRef] [PubMed]
  12. S. Palit, J. Kirch, G. Tsvid, L. Mawst, T. Kuech, and N. M. Jokerst, “Low-threshold thin-film III-V lasers bonded to silicon with front and back side defined features,” Opt. Lett.34(18), 2802–2804 (2009).
    [CrossRef] [PubMed]
  13. K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis,” IEICE Electron. Express8(8), 596–603 (2011).
    [CrossRef]
  14. T. Kageyama, K. Nishi, M. Yamaguchi, R. Machida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220 °C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in CLEO/Europe and EQEC 2011 Conference Digest (Optical Society of America), paper PDA_1 (2011).
  15. K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express17(9), 7036–7042 (2009).
    [CrossRef] [PubMed]
  16. E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
    [CrossRef]
  17. K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).
    [CrossRef]

2012 (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
[CrossRef] [PubMed]

2011 (3)

2009 (2)

2007 (1)

2006 (2)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

2000 (2)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electric chips,” Proc. IEEE88(6), 728–749 (2000).
[CrossRef]

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).
[CrossRef]

1992 (1)

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

1990 (1)

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

1989 (1)

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
[CrossRef]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982).
[CrossRef]

Akagawa, T.

Akiyama, S.

Al-Jassim, M. M.

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

Arakawa, Y.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
[CrossRef] [PubMed]

K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis,” IEICE Electron. Express8(8), 596–603 (2011).
[CrossRef]

Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, and Y. Arakawa, “First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate,” Opt. Express19(26), B159–B165 (2011).
[CrossRef] [PubMed]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982).
[CrossRef]

Baba, T.

Baets, R.

Bhattacharya, P.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

Bowers, J. E.

Broberg, B.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Cohen, O.

Di Cioccio, L.

Fang, A. W.

Fedeli, J.-M.

Friedrich, E. E. L.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Fujikata, J.

Guimard, D.

Hatori, N.

Huffaker, D. L.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

Ishizaka, M.

Itabashi, S.

Iwamoto, S.

K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis,” IEICE Electron. Express8(8), 596–603 (2011).
[CrossRef]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

Jokerst, N. M.

Jones, R.

Kato, K.

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).
[CrossRef]

Kirch, J.

Kroemer, H.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
[CrossRef]

Kuech, T.

Lagahe, C.

Lee, A.

Liu, H.

Liu, T.-Y.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
[CrossRef]

Mawst, L.

Mi, Z.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electric chips,” Proc. IEEE88(6), 728–749 (2000).
[CrossRef]

Miura, M.

Nakamura, T.

Nilsson, S.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Noguchi, M.

Nomura, M.

Oberg, M. G.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Okamoto, D.

Okano, M.

Okayama, H.

Palit, S.

Paniccia, M. J.

Park, H.

Petroff, P. M.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
[CrossRef]

Pozzi, F.

Regreny, P.

Rojo Romeo, P.

Saito, E.

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982).
[CrossRef]

Seassal, C.

Seeds, A.

Shimizu, T.

Shimura, D.

Sugo, M.

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

Takanashi, Y.

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

Tanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
[CrossRef] [PubMed]

K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis,” IEICE Electron. Express8(8), 596–603 (2011).
[CrossRef]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

Tohmori, Y.

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).
[CrossRef]

Tsuchizawa, T.

Tsvid, G.

Urino, Y.

Usuki, T.

Valette, S.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Verstuyft, S.

Wang, T.

Watanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
[CrossRef] [PubMed]

Watanabe, T.

Yamada, K.

Yamaguchi, M.

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

Yamamoto, T.

Yang, J.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982).
[CrossRef]

Electron. Lett. (1)

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).
[CrossRef]

IEICE Electron. Express (1)

K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis,” IEICE Electron. Express8(8), 596–603 (2011).
[CrossRef]

J. Appl. Phys. (1)

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

J. Cryst. Growth (1)

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
[CrossRef]

J. Lightwave Technol. (1)

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Nat. Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electric chips,” Proc. IEEE88(6), 728–749 (2000).
[CrossRef]

Other (2)

T. Kageyama, K. Nishi, M. Yamaguchi, R. Machida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220 °C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in CLEO/Europe and EQEC 2011 Conference Digest (Optical Society of America), paper PDA_1 (2011).

Q.-Y. Tong and U. Gosele, Semiconductor wafer bonding: Science and technology (Wiley, New Jersey, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic flow diagram of the fabrication process for the InAs/GaAs QD lasers on Si rib structures.

Fig. 2
Fig. 2

Atomic force microscope image of the as-grown InAs QDs.

Fig. 3
Fig. 3

Room-temperature photoluminescence spectrum of the as-grown InAs/GaAs QD laser structure.

Fig. 4
Fig. 4

Scanning electron microscope image of a laser structure grown on a GaAs substrate direct-bonded to a Si rib.

Fig. 5
Fig. 5

Light-current characteristics of the fabricated InAs/GaAs QD laser on a Si rib at room temperature.

Fig. 6
Fig. 6

DC current-voltage characteristics of the InAs/GaAs QD laser on a Si rib at room temperature.

Fig. 7
Fig. 7

Lasing spectrum of the laser at a current density of 680 A cm−2 at room temperature.

Metrics