Abstract

An InAs/GaAs quantum dot laser on a Si rib structure has been demonstrated. The double heterostructure laser structure grown on a GaAs substrate is layer-transferred onto a patterned Si substrate by GaAs/Si direct wafer bonding without oxide or metal mediation. This Fabry-Perot laser operates with current injection through the GaAs/Si rib interface and exhibits InAs quantum dot ground state lasing at 1.28 μm at room temperature, with a threshold current density of 480 A cm−2.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electric chips,” Proc. IEEE88(6), 728–749 (2000).
    [CrossRef]
  2. Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, and Y. Arakawa, “First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate,” Opt. Express19(26), B159–B165 (2011).
    [CrossRef] [PubMed]
  3. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982).
    [CrossRef]
  4. Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
    [CrossRef]
  5. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express19(12), 11381–11386 (2011).
    [CrossRef] [PubMed]
  6. H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
    [CrossRef]
  7. M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
    [CrossRef]
  8. Q.-Y. Tong and U. Gosele, Semiconductor wafer bonding: Science and technology (Wiley, New Jersey, 1998).
  9. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
    [CrossRef] [PubMed]
  10. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  11. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express15(11), 6744–6749 (2007).
    [CrossRef] [PubMed]
  12. S. Palit, J. Kirch, G. Tsvid, L. Mawst, T. Kuech, and N. M. Jokerst, “Low-threshold thin-film III-V lasers bonded to silicon with front and back side defined features,” Opt. Lett.34(18), 2802–2804 (2009).
    [CrossRef] [PubMed]
  13. K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis,” IEICE Electron. Express8(8), 596–603 (2011).
    [CrossRef]
  14. T. Kageyama, K. Nishi, M. Yamaguchi, R. Machida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220 °C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in CLEO/Europe and EQEC 2011 Conference Digest (Optical Society of America), paper PDA_1 (2011).
  15. K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express17(9), 7036–7042 (2009).
    [CrossRef] [PubMed]
  16. E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
    [CrossRef]
  17. K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).
    [CrossRef]

2012 (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
[CrossRef] [PubMed]

2011 (3)

2009 (2)

2007 (1)

2006 (2)

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

2000 (2)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electric chips,” Proc. IEEE88(6), 728–749 (2000).
[CrossRef]

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).
[CrossRef]

1992 (1)

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

1990 (1)

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

1989 (1)

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
[CrossRef]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982).
[CrossRef]

Akagawa, T.

Akiyama, S.

Al-Jassim, M. M.

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

Arakawa, Y.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
[CrossRef] [PubMed]

K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis,” IEICE Electron. Express8(8), 596–603 (2011).
[CrossRef]

Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, and Y. Arakawa, “First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate,” Opt. Express19(26), B159–B165 (2011).
[CrossRef] [PubMed]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982).
[CrossRef]

Baba, T.

Baets, R.

Bhattacharya, P.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

Bowers, J. E.

Broberg, B.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Cohen, O.

Di Cioccio, L.

Fang, A. W.

Fedeli, J.-M.

Friedrich, E. E. L.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Fujikata, J.

Guimard, D.

Hatori, N.

Huffaker, D. L.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

Ishizaka, M.

Itabashi, S.

Iwamoto, S.

K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis,” IEICE Electron. Express8(8), 596–603 (2011).
[CrossRef]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

Jokerst, N. M.

Jones, R.

Kato, K.

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).
[CrossRef]

Kirch, J.

Kroemer, H.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
[CrossRef]

Kuech, T.

Lagahe, C.

Lee, A.

Liu, H.

Liu, T.-Y.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
[CrossRef]

Mawst, L.

Mi, Z.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electric chips,” Proc. IEEE88(6), 728–749 (2000).
[CrossRef]

Miura, M.

Nakamura, T.

Nilsson, S.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Noguchi, M.

Nomura, M.

Oberg, M. G.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Okamoto, D.

Okano, M.

Okayama, H.

Palit, S.

Paniccia, M. J.

Park, H.

Petroff, P. M.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
[CrossRef]

Pozzi, F.

Regreny, P.

Rojo Romeo, P.

Saito, E.

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982).
[CrossRef]

Seassal, C.

Seeds, A.

Shimizu, T.

Shimura, D.

Sugo, M.

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

Takanashi, Y.

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

Tanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
[CrossRef] [PubMed]

K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis,” IEICE Electron. Express8(8), 596–603 (2011).
[CrossRef]

K. Tanabe, M. Nomura, D. Guimard, S. Iwamoto, and Y. Arakawa, “Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate,” Opt. Express17(9), 7036–7042 (2009).
[CrossRef] [PubMed]

Tohmori, Y.

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).
[CrossRef]

Tsuchizawa, T.

Tsvid, G.

Urino, Y.

Usuki, T.

Valette, S.

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Verstuyft, S.

Wang, T.

Watanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
[CrossRef] [PubMed]

Watanabe, T.

Yamada, K.

Yamaguchi, M.

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

Yamamoto, T.

Yang, J.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett.40(11), 939–941 (1982).
[CrossRef]

Electron. Lett. (1)

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett.42(2), 121–122 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron.6(1), 4–13 (2000).
[CrossRef]

IEICE Electron. Express (1)

K. Tanabe, S. Iwamoto, and Y. Arakawa, “Novel III-V/Si hybrid laser structures with current injection across conductive wafer-bonded heterointerfaces: A proposal and analysis,” IEICE Electron. Express8(8), 596–603 (2011).
[CrossRef]

J. Appl. Phys. (1)

M. Sugo, Y. Takanashi, M. M. Al-Jassim, and M. Yamaguchi, “Heteroepitaxial growth and characterization of InP on Si substrates,” J. Appl. Phys.68(2), 540–547 (1990).
[CrossRef]

J. Cryst. Growth (1)

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth95(1-4), 96–102 (1989).
[CrossRef]

J. Lightwave Technol. (1)

E. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, “Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides,” J. Lightwave Technol.10(3), 336–340 (1992).
[CrossRef]

Nat. Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Nat. Sci. Rep.2, 349 (2012).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electric chips,” Proc. IEEE88(6), 728–749 (2000).
[CrossRef]

Other (2)

Q.-Y. Tong and U. Gosele, Semiconductor wafer bonding: Science and technology (Wiley, New Jersey, 1998).

T. Kageyama, K. Nishi, M. Yamaguchi, R. Machida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220 °C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in CLEO/Europe and EQEC 2011 Conference Digest (Optical Society of America), paper PDA_1 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic flow diagram of the fabrication process for the InAs/GaAs QD lasers on Si rib structures.

Fig. 2
Fig. 2

Atomic force microscope image of the as-grown InAs QDs.

Fig. 3
Fig. 3

Room-temperature photoluminescence spectrum of the as-grown InAs/GaAs QD laser structure.

Fig. 4
Fig. 4

Scanning electron microscope image of a laser structure grown on a GaAs substrate direct-bonded to a Si rib.

Fig. 5
Fig. 5

Light-current characteristics of the fabricated InAs/GaAs QD laser on a Si rib at room temperature.

Fig. 6
Fig. 6

DC current-voltage characteristics of the InAs/GaAs QD laser on a Si rib at room temperature.

Fig. 7
Fig. 7

Lasing spectrum of the laser at a current density of 680 A cm−2 at room temperature.

Metrics