Abstract

A holographically designed, aperiodic distributed feedback grating is used as a multi-resonance filter and embedded within an existing Fabry-Pérot (FP) terahertz (THz) quantum cascade laser (QCL) cavity. Balancing the feedback strengths of the filter resonances and the FP cavity creates a system capable of a high degree of single-mode selectivity, which is sensitive to changes in driving current. Multi-moded QCLs operating around 2.9 THz are thus modified to achieve purely electronic discrete tuning spanning over 160 GHz with an average tuning resolution of 30 GHz. Applying the same multi-resonance filter to QCLs with gain peaks around 2.65 and 2.9 THz leads to dual-mode lasing with an electrically controlled frequency separation of between 190 and 267 GHz. A phase sensitive mode selection mechanism is experimentally confirmed by the observation of divergent fine-tuning of the lasing modes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
    [CrossRef] [PubMed]
  2. L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett.41(7), 419–421 (2005).
    [CrossRef]
  3. L. Mahler, A. Tredicucci, R. Köhler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett.87(18), 181101 (2005).
    [CrossRef]
  4. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides,” Opt. Lett.30(21), 2909–2911 (2005).
    [CrossRef] [PubMed]
  5. S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
    [CrossRef]
  6. M. S. Vitiello and A. Tredicucci, “Tunable emission in THz quantum cascade lasers,” IEEE Trans. Terahertz Sci. Tech.1(1), 76–84 (2011).
    [CrossRef]
  7. A. W. M. Lee, T.-Y. Kao, D. Burghoff, Q. Hu, and J. L. Reno, “Terahertz tomography using quantum-cascade lasers,” Opt. Lett.37(2), 217–219 (2012).
    [CrossRef] [PubMed]
  8. G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, “Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz,” Appl. Phys. Lett.88(14), 141102 (2006).
    [CrossRef]
  9. S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett.95(18), 181101 (2009).
    [CrossRef]
  10. J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
    [CrossRef]
  11. J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
    [CrossRef]
  12. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
    [CrossRef]
  13. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
    [CrossRef]
  14. R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
    [CrossRef]
  15. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
    [CrossRef]
  16. P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett.97(18), 181111 (2010).
    [CrossRef]
  17. S. Chakraborty, C.-W. Hsin, O. Marshall, and M. Khairuzzaman, “Switchable aperiodic distributed feedback lasers: time domain modelling and experiment,” in CLEO: Science and Innovations, OSA Technical Digest (online), paper JW2A.101 (2012).
  18. S. Chakraborty, C.-W. Hsin, O. Marshall, M. Khairuzzaman, H. Beere, and D. Ritchie, “Mode switching using weak aperiodic DFB gratings within Fabry-Pérot lasers,” in PECS-X: 10th International Symposium on Photonic and Electromagnetic Crystal Structures, Santa Fe, USA, (2012).
  19. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J.55, 109–126 (1976).
  20. D. L. Jaggard and Y. Kim, “Accurate one-dimensional inverse scattering using a nonlinear renormalization technique,” J. Opt. Soc. Am. A2(11), 1922–1930 (1985).
    [CrossRef]
  21. M. C. Parker, R. J. Mears, and S. D. Walker, “A Fourier transform theory for photon localization and evanescence in photonic bandgap structures,” J. Opt. A.: Pure Appl. Opt.3(6), S171–S183 (2001).
    [CrossRef]
  22. S. Chakraborty, M. C. Parker, and R. J. Mears, “A Fourier (k-) space design approach for controllable photonic band and localization states in aperiodic lattices,” Photonics Nanostruct. Fundam. Appl.3(2-3), 139–147 (2005).
    [CrossRef]
  23. S. Chakraborty, O. P. Marshall, M. Khairuzzaman, C.-W. Hsin, H. E. Beere, and D. A. Ritchie, “Longitudinal computer-generated holograms for digital frequency control in electronically tunable terahertz lasers,” Appl. Phys. Lett.101(12), 121103 (2012).
    [CrossRef]
  24. J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (IEE SPIE Optical Engineering Press, 1998).
  25. S. A. Wood, R. G. S. Plumb, D. J. Robbins, N. D. Whitbread, and P. J. Williams, “Time domain modelling of sampled grating tunable lasers,” IEE Proc., Optoelectron.147(1), 43–48 (2000).
    [CrossRef]
  26. J. Kröll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett.91(16), 161108 (2007).
    [CrossRef]
  27. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85(10), 1674–1676 (2004).
    [CrossRef]
  28. J. R. Freeman, C. Worrall, V. Apostolopoulos, J. Alton, H. Beere, and D. A. Ritchie, “Frequency manipulation of THz bound-to-continuum quantum-cascade lasers,” IEEE Photon. Technol. Lett.20(4), 303–305 (2008).
    [CrossRef]
  29. J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett.99(24), 241108 (2011).
    [CrossRef]

2012

A. W. M. Lee, T.-Y. Kao, D. Burghoff, Q. Hu, and J. L. Reno, “Terahertz tomography using quantum-cascade lasers,” Opt. Lett.37(2), 217–219 (2012).
[CrossRef] [PubMed]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

S. Chakraborty, O. P. Marshall, M. Khairuzzaman, C.-W. Hsin, H. E. Beere, and D. A. Ritchie, “Longitudinal computer-generated holograms for digital frequency control in electronically tunable terahertz lasers,” Appl. Phys. Lett.101(12), 121103 (2012).
[CrossRef]

2011

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett.99(24), 241108 (2011).
[CrossRef]

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

M. S. Vitiello and A. Tredicucci, “Tunable emission in THz quantum cascade lasers,” IEEE Trans. Terahertz Sci. Tech.1(1), 76–84 (2011).
[CrossRef]

2010

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett.97(18), 181111 (2010).
[CrossRef]

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

2009

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
[CrossRef]

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett.95(18), 181101 (2009).
[CrossRef]

2008

J. R. Freeman, C. Worrall, V. Apostolopoulos, J. Alton, H. Beere, and D. A. Ritchie, “Frequency manipulation of THz bound-to-continuum quantum-cascade lasers,” IEEE Photon. Technol. Lett.20(4), 303–305 (2008).
[CrossRef]

2007

J. Kröll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett.91(16), 161108 (2007).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

2006

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, “Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz,” Appl. Phys. Lett.88(14), 141102 (2006).
[CrossRef]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
[CrossRef]

2005

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett.41(7), 419–421 (2005).
[CrossRef]

L. Mahler, A. Tredicucci, R. Köhler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett.87(18), 181101 (2005).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides,” Opt. Lett.30(21), 2909–2911 (2005).
[CrossRef] [PubMed]

S. Chakraborty, M. C. Parker, and R. J. Mears, “A Fourier (k-) space design approach for controllable photonic band and localization states in aperiodic lattices,” Photonics Nanostruct. Fundam. Appl.3(2-3), 139–147 (2005).
[CrossRef]

2004

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85(10), 1674–1676 (2004).
[CrossRef]

2002

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

2001

M. C. Parker, R. J. Mears, and S. D. Walker, “A Fourier transform theory for photon localization and evanescence in photonic bandgap structures,” J. Opt. A.: Pure Appl. Opt.3(6), S171–S183 (2001).
[CrossRef]

2000

S. A. Wood, R. G. S. Plumb, D. J. Robbins, N. D. Whitbread, and P. J. Williams, “Time domain modelling of sampled grating tunable lasers,” IEE Proc., Optoelectron.147(1), 43–48 (2000).
[CrossRef]

1993

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
[CrossRef]

1985

1976

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J.55, 109–126 (1976).

Ajili, L.

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett.41(7), 419–421 (2005).
[CrossRef]

Allen, M. G.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

Alton, J.

J. R. Freeman, C. Worrall, V. Apostolopoulos, J. Alton, H. Beere, and D. A. Ritchie, “Frequency manipulation of THz bound-to-continuum quantum-cascade lasers,” IEEE Photon. Technol. Lett.20(4), 303–305 (2008).
[CrossRef]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85(10), 1674–1676 (2004).
[CrossRef]

Apostolopoulos, V.

J. R. Freeman, C. Worrall, V. Apostolopoulos, J. Alton, H. Beere, and D. A. Ritchie, “Frequency manipulation of THz bound-to-continuum quantum-cascade lasers,” IEEE Photon. Technol. Lett.20(4), 303–305 (2008).
[CrossRef]

Bai, Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Bandyopadhyay, N.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Barbieri, S.

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85(10), 1674–1676 (2004).
[CrossRef]

Beere, H.

J. R. Freeman, C. Worrall, V. Apostolopoulos, J. Alton, H. Beere, and D. A. Ritchie, “Frequency manipulation of THz bound-to-continuum quantum-cascade lasers,” IEEE Photon. Technol. Lett.20(4), 303–305 (2008).
[CrossRef]

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, “Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz,” Appl. Phys. Lett.88(14), 141102 (2006).
[CrossRef]

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett.41(7), 419–421 (2005).
[CrossRef]

Beere, H. E.

S. Chakraborty, O. P. Marshall, M. Khairuzzaman, C.-W. Hsin, H. E. Beere, and D. A. Ritchie, “Longitudinal computer-generated holograms for digital frequency control in electronically tunable terahertz lasers,” Appl. Phys. Lett.101(12), 121103 (2012).
[CrossRef]

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett.99(24), 241108 (2011).
[CrossRef]

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
[CrossRef]

L. Mahler, A. Tredicucci, R. Köhler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett.87(18), 181101 (2005).
[CrossRef]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85(10), 1674–1676 (2004).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Beltram, F.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

L. Mahler, A. Tredicucci, R. Köhler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett.87(18), 181101 (2005).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Blanchard, R.

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Brewer, A.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett.99(24), 241108 (2011).
[CrossRef]

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

Burghoff, D.

Calligaro, M.

J. Kröll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett.91(16), 161108 (2007).
[CrossRef]

Capasso, F.

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Cavalié, P.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett.99(24), 241108 (2011).
[CrossRef]

Chakraborty, S.

S. Chakraborty, O. P. Marshall, M. Khairuzzaman, C.-W. Hsin, H. E. Beere, and D. A. Ritchie, “Longitudinal computer-generated holograms for digital frequency control in electronically tunable terahertz lasers,” Appl. Phys. Lett.101(12), 121103 (2012).
[CrossRef]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
[CrossRef]

S. Chakraborty, M. C. Parker, and R. J. Mears, “A Fourier (k-) space design approach for controllable photonic band and localization states in aperiodic lattices,” Photonics Nanostruct. Fundam. Appl.3(2-3), 139–147 (2005).
[CrossRef]

Chakraborty, T.

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
[CrossRef]

Chuang, Z.-M.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
[CrossRef]

Coldren, L. A.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
[CrossRef]

Dal Negro, L.

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Darmo, J.

J. Kröll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett.91(16), 161108 (2007).
[CrossRef]

Davies, A. G.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett.95(18), 181101 (2009).
[CrossRef]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Davies, G.

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett.41(7), 419–421 (2005).
[CrossRef]

Dean, P.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett.95(18), 181101 (2009).
[CrossRef]

Dhillon, S.

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

Dhillon, S. S.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett.99(24), 241108 (2011).
[CrossRef]

J. Kröll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett.91(16), 161108 (2007).
[CrossRef]

Diehl, L.

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Dupuis, R. D.

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Faist, J.

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, “Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz,” Appl. Phys. Lett.88(14), 141102 (2006).
[CrossRef]

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett.41(7), 419–421 (2005).
[CrossRef]

Fenner, D. B.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

Forchel, A.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett.97(18), 181111 (2010).
[CrossRef]

Fowler, J.

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
[CrossRef]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85(10), 1674–1676 (2004).
[CrossRef]

Freeman, J. R.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett.99(24), 241108 (2011).
[CrossRef]

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

J. R. Freeman, C. Worrall, V. Apostolopoulos, J. Alton, H. Beere, and D. A. Ritchie, “Frequency manipulation of THz bound-to-continuum quantum-cascade lasers,” IEEE Photon. Technol. Lett.20(4), 303–305 (2008).
[CrossRef]

Fuchs, P.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett.97(18), 181111 (2010).
[CrossRef]

Green, R. P.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

Hensley, J. M.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

Höfling, S.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett.97(18), 181111 (2010).
[CrossRef]

Hsin, C.-W.

S. Chakraborty, O. P. Marshall, M. Khairuzzaman, C.-W. Hsin, H. E. Beere, and D. A. Ritchie, “Longitudinal computer-generated holograms for digital frequency control in electronically tunable terahertz lasers,” Appl. Phys. Lett.101(12), 121103 (2012).
[CrossRef]

Hu, Q.

Huang, Y.

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Jaggard, D. L.

Jayaraman, V.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
[CrossRef]

Jukam, N.

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

Kao, T.-Y.

Khairuzzaman, M.

S. Chakraborty, O. P. Marshall, M. Khairuzzaman, C.-W. Hsin, H. E. Beere, and D. A. Ritchie, “Longitudinal computer-generated holograms for digital frequency control in electronically tunable terahertz lasers,” Appl. Phys. Lett.101(12), 121103 (2012).
[CrossRef]

Khanna, S. P.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett.95(18), 181101 (2009).
[CrossRef]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
[CrossRef]

Kim, Y.

Koeth, J.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett.97(18), 181111 (2010).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J.55, 109–126 (1976).

Köhler, R.

L. Mahler, A. Tredicucci, R. Köhler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett.87(18), 181101 (2005).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Kröll, J.

J. Kröll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett.91(16), 161108 (2007).
[CrossRef]

Kumar, S.

Lee, A. W. M.

Linfield, E.

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett.41(7), 419–421 (2005).
[CrossRef]

Linfield, E. H.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett.95(18), 181101 (2009).
[CrossRef]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
[CrossRef]

L. Mahler, A. Tredicucci, R. Köhler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett.87(18), 181101 (2005).
[CrossRef]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85(10), 1674–1676 (2004).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Lu, Q. Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Madéo, J.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett.99(24), 241108 (2011).
[CrossRef]

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

Mahler, L.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

L. Mahler, A. Tredicucci, R. Köhler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett.87(18), 181101 (2005).
[CrossRef]

Marcadet, X.

J. Kröll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett.91(16), 161108 (2007).
[CrossRef]

Marshall, O. P.

S. Chakraborty, O. P. Marshall, M. Khairuzzaman, C.-W. Hsin, H. E. Beere, and D. A. Ritchie, “Longitudinal computer-generated holograms for digital frequency control in electronically tunable terahertz lasers,” Appl. Phys. Lett.101(12), 121103 (2012).
[CrossRef]

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

Mears, R. J.

S. Chakraborty, M. C. Parker, and R. J. Mears, “A Fourier (k-) space design approach for controllable photonic band and localization states in aperiodic lattices,” Photonics Nanostruct. Fundam. Appl.3(2-3), 139–147 (2005).
[CrossRef]

M. C. Parker, R. J. Mears, and S. D. Walker, “A Fourier transform theory for photon localization and evanescence in photonic bandgap structures,” J. Opt. A.: Pure Appl. Opt.3(6), S171–S183 (2001).
[CrossRef]

Menzel, S.

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Nida, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Oustinov, D.

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

Parker, M. C.

S. Chakraborty, M. C. Parker, and R. J. Mears, “A Fourier (k-) space design approach for controllable photonic band and localization states in aperiodic lattices,” Photonics Nanostruct. Fundam. Appl.3(2-3), 139–147 (2005).
[CrossRef]

M. C. Parker, R. J. Mears, and S. D. Walker, “A Fourier transform theory for photon localization and evanescence in photonic bandgap structures,” J. Opt. A.: Pure Appl. Opt.3(6), S171–S183 (2001).
[CrossRef]

Pflugl, C.

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Plumb, R. G. S.

S. A. Wood, R. G. S. Plumb, D. J. Robbins, N. D. Whitbread, and P. J. Williams, “Time domain modelling of sampled grating tunable lasers,” IEE Proc., Optoelectron.147(1), 43–48 (2000).
[CrossRef]

Qin, Q.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
[CrossRef]

Razeghi, M.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Reno, J. L.

Ritchie, D.

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, “Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz,” Appl. Phys. Lett.88(14), 141102 (2006).
[CrossRef]

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett.41(7), 419–421 (2005).
[CrossRef]

Ritchie, D. A.

S. Chakraborty, O. P. Marshall, M. Khairuzzaman, C.-W. Hsin, H. E. Beere, and D. A. Ritchie, “Longitudinal computer-generated holograms for digital frequency control in electronically tunable terahertz lasers,” Appl. Phys. Lett.101(12), 121103 (2012).
[CrossRef]

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett.99(24), 241108 (2011).
[CrossRef]

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

J. R. Freeman, C. Worrall, V. Apostolopoulos, J. Alton, H. Beere, and D. A. Ritchie, “Frequency manipulation of THz bound-to-continuum quantum-cascade lasers,” IEEE Photon. Technol. Lett.20(4), 303–305 (2008).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
[CrossRef]

L. Mahler, A. Tredicucci, R. Köhler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett.87(18), 181101 (2005).
[CrossRef]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85(10), 1674–1676 (2004).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Robbins, D. J.

S. A. Wood, R. G. S. Plumb, D. J. Robbins, N. D. Whitbread, and P. J. Williams, “Time domain modelling of sampled grating tunable lasers,” IEE Proc., Optoelectron.147(1), 43–48 (2000).
[CrossRef]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Ryou, J.-H.

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Salih, M.

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett.95(18), 181101 (2009).
[CrossRef]

Scalari, G.

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, “Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz,” Appl. Phys. Lett.88(14), 141102 (2006).
[CrossRef]

Semmel, J.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett.97(18), 181111 (2010).
[CrossRef]

Seufert, J.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett.97(18), 181111 (2010).
[CrossRef]

Sirtori, C.

J. Kröll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett.91(16), 161108 (2007).
[CrossRef]

Slivken, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Tignon, J.

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett.99(24), 241108 (2011).
[CrossRef]

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

Tredicucci, A.

M. S. Vitiello and A. Tredicucci, “Tunable emission in THz quantum cascade lasers,” IEEE Trans. Terahertz Sci. Tech.1(1), 76–84 (2011).
[CrossRef]

L. Mahler, A. Tredicucci, R. Köhler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett.87(18), 181101 (2005).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

Tredicuccia, A.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

Tsao, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Unterrainer, K.

J. Kröll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett.91(16), 161108 (2007).
[CrossRef]

Vitiello, M. S.

M. S. Vitiello and A. Tredicucci, “Tunable emission in THz quantum cascade lasers,” IEEE Trans. Terahertz Sci. Tech.1(1), 76–84 (2011).
[CrossRef]

Walker, S. D.

M. C. Parker, R. J. Mears, and S. D. Walker, “A Fourier transform theory for photon localization and evanescence in photonic bandgap structures,” J. Opt. A.: Pure Appl. Opt.3(6), S171–S183 (2001).
[CrossRef]

Walther, C.

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, “Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz,” Appl. Phys. Lett.88(14), 141102 (2006).
[CrossRef]

Wang, C.

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Whitbread, N. D.

S. A. Wood, R. G. S. Plumb, D. J. Robbins, N. D. Whitbread, and P. J. Williams, “Time domain modelling of sampled grating tunable lasers,” IEE Proc., Optoelectron.147(1), 43–48 (2000).
[CrossRef]

Williams, B. S.

Williams, P. J.

S. A. Wood, R. G. S. Plumb, D. J. Robbins, N. D. Whitbread, and P. J. Williams, “Time domain modelling of sampled grating tunable lasers,” IEE Proc., Optoelectron.147(1), 43–48 (2000).
[CrossRef]

Wood, S. A.

S. A. Wood, R. G. S. Plumb, D. J. Robbins, N. D. Whitbread, and P. J. Williams, “Time domain modelling of sampled grating tunable lasers,” IEE Proc., Optoelectron.147(1), 43–48 (2000).
[CrossRef]

Worrall, C.

J. R. Freeman, C. Worrall, V. Apostolopoulos, J. Alton, H. Beere, and D. A. Ritchie, “Frequency manipulation of THz bound-to-continuum quantum-cascade lasers,” IEEE Photon. Technol. Lett.20(4), 303–305 (2008).
[CrossRef]

Worrall, C. H.

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
[CrossRef]

Worschech, L.

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett.97(18), 181111 (2010).
[CrossRef]

Xu, J.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

Appl. Phys. Lett.

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, “Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz,” Appl. Phys. Lett.88(14), 141102 (2006).
[CrossRef]

S. P. Khanna, M. Salih, P. Dean, A. G. Davies, and E. H. Linfield, “Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region,” Appl. Phys. Lett.95(18), 181101 (2009).
[CrossRef]

J. R. Freeman, J. Madéo, A. Brewer, S. Dhillon, O. P. Marshall, N. Jukam, D. Oustinov, J. Tignon, H. E. Beere, and D. A. Ritchie, “Dual wavelength emission from a terahertz quantum cascade laser,” Appl. Phys. Lett.96(5), 051120 (2010).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicuccia, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett.91(12), 121104 (2007).
[CrossRef]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

P. Fuchs, J. Seufert, J. Koeth, J. Semmel, S. Höfling, L. Worschech, and A. Forchel, “Widely tunable quantum cascade lasers with coupled cavities for gas detection,” Appl. Phys. Lett.97(18), 181111 (2010).
[CrossRef]

S. Chakraborty, O. P. Marshall, M. Khairuzzaman, C.-W. Hsin, H. E. Beere, and D. A. Ritchie, “Longitudinal computer-generated holograms for digital frequency control in electronically tunable terahertz lasers,” Appl. Phys. Lett.101(12), 121103 (2012).
[CrossRef]

J. Kröll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett.91(16), 161108 (2007).
[CrossRef]

S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett.85(10), 1674–1676 (2004).
[CrossRef]

J. R. Freeman, A. Brewer, J. Madéo, P. Cavalié, S. S. Dhillon, J. Tignon, H. E. Beere, and D. A. Ritchie, “Broad gain in a bound-to-continuum quantum cascade laser with heterogeneous active region,” Appl. Phys. Lett.99(24), 241108 (2011).
[CrossRef]

L. Mahler, A. Tredicucci, R. Köhler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett.87(18), 181101 (2005).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J.55, 109–126 (1976).

Electron. Lett.

S. Chakraborty, T. Chakraborty, S. P. Khanna, E. H. Linfield, A. G. Davies, J. Fowler, C. H. Worrall, H. E. Beere, and D. A. Ritchie, “Spectral engineering of terahertz quantum cascade lasers using focused ion beam etched photonic lattices,” Electron. Lett.42(7), 404–405 (2006).
[CrossRef]

L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, “Loss-coupled distributed feedback far-infrared quantum cascade lasers,” Electron. Lett.41(7), 419–421 (2005).
[CrossRef]

IEE Proc., Optoelectron.

S. A. Wood, R. G. S. Plumb, D. J. Robbins, N. D. Whitbread, and P. J. Williams, “Time domain modelling of sampled grating tunable lasers,” IEE Proc., Optoelectron.147(1), 43–48 (2000).
[CrossRef]

IEEE J. Quantum Electron.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

J. R. Freeman, C. Worrall, V. Apostolopoulos, J. Alton, H. Beere, and D. A. Ritchie, “Frequency manipulation of THz bound-to-continuum quantum-cascade lasers,” IEEE Photon. Technol. Lett.20(4), 303–305 (2008).
[CrossRef]

IEEE Trans. Terahertz Sci. Tech.

M. S. Vitiello and A. Tredicucci, “Tunable emission in THz quantum cascade lasers,” IEEE Trans. Terahertz Sci. Tech.1(1), 76–84 (2011).
[CrossRef]

J. Opt. A.: Pure Appl. Opt.

M. C. Parker, R. J. Mears, and S. D. Walker, “A Fourier transform theory for photon localization and evanescence in photonic bandgap structures,” J. Opt. A.: Pure Appl. Opt.3(6), S171–S183 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Photonics

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
[CrossRef]

Nature

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef] [PubMed]

New J. Phys.

R. Blanchard, S. Menzel, C. Pflűgl, L. Diehl, C. Wang, Y. Huang, J.-H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Opt. Lett.

Photonics Nanostruct. Fundam. Appl.

S. Chakraborty, M. C. Parker, and R. J. Mears, “A Fourier (k-) space design approach for controllable photonic band and localization states in aperiodic lattices,” Photonics Nanostruct. Fundam. Appl.3(2-3), 139–147 (2005).
[CrossRef]

Other

J. Carroll, J. Whiteaway, and D. Plumb, Distributed Feedback Semiconductor Lasers (IEE SPIE Optical Engineering Press, 1998).

S. Chakraborty, C.-W. Hsin, O. Marshall, and M. Khairuzzaman, “Switchable aperiodic distributed feedback lasers: time domain modelling and experiment,” in CLEO: Science and Innovations, OSA Technical Digest (online), paper JW2A.101 (2012).

S. Chakraborty, C.-W. Hsin, O. Marshall, M. Khairuzzaman, H. Beere, and D. Ritchie, “Mode switching using weak aperiodic DFB gratings within Fabry-Pérot lasers,” in PECS-X: 10th International Symposium on Photonic and Electromagnetic Crystal Structures, Santa Fe, USA, (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A multi-band reflection filter, with a spectral filter response κ ˜ (f) , is incorporated into an FP cavity, resulting in two additional DBR sub-cavities. (b) An ideal κ ˜ (f) , containing multiple resonances within the gain bandwidth of a THz QCL.

Fig. 2
Fig. 2

TDM results. (a) Schematic representation of the LCGH structure and calculated reflectivity response in the spectral region of interest. The LCGH contains 177 low refractive index slits (vertical lines) and multiple defects, in a structure containing 2N pixels (N = 200). The minimum slit separation is Λ, whereas defects lengthen individual separations in multiples of Λ/2 (horizontal dashes). Simulated LCGH-QCL emission spectra for: (b) a range of gain centre frequencies (dashed lines) with a fixed additional phase ϕ1, (b) fixed gain frequency as ϕ1 is varied, and (c) with simultaneous gain and phase variations.

Fig. 3
Fig. 3

(a) LCGH structure from Fig. 2(a). (b) Schematic longitudinal cross section through the centre of a FIB milled QCL ridge. Inset: Detail of the upper waveguide layers. Calculated 2.9 THz fundamental mode intensity profiles for (c) a standard SI-SP waveguide and (d) after the removal of upper waveguide layers. SEM images: (e) a section of a single milled slit and (f) the cross section of a slit, showing minimal penetration into the active region.

Fig. 4
Fig. 4

Measured FP emission spectra from (a) device 1 and (b) device 2. (c) LCGH reflectivity response for devices 1 (solid line) and 2 (dashed). (d) LCGH-QCL emission from devices 1 (solid line) and 2 (dashed). (e) Electrical and output power characteristics of devices 1 (thick lines) and 2 (thin lines), in FP (dashed) and LCGH-QCL (solid) configurations. (f)-(j) Equivalent measurements of devices 3 (i: solid, j: thick lines) and 4 (i: dashed, j: thin lines), fabricated from a second AR, V653.

Fig. 5
Fig. 5

(a) Calculated spectral coupling magnitude and (b) phase of the LCGH. (c) Mode solutions from 5b, with a varying but spectrally flat phase perturbation ϕ0. (d)-(f) Measured fine mode tuning in device 1. (g) Mode fine-tuning of 2.25 GHz recorded from device 2.

Fig. 6
Fig. 6

Measured LCGH-QCL emission spectra from (a) device 5 (Λ = 14.1 µm, deep FIB milling) and (b) device 6 (Λ = 14.3 µm, shallow FIB milling).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ ˜ ( f ) κ( z ) e j 4πf n eff z /c dz,
κ( z )= j 4 n eff 2 L ε( z ) z ,

Metrics