Abstract

We report experimental evidence of nonvolatile all-optical memory operation using the two linear polarization states emitted from a GaAs oxide-confined VCSEL. The two polarization states coexist in a large range of pumping currents and substrate temperatures, and they can be controlled all-optically by exposing the device to polarization selective feedback, to crossed polarization reinjection orby injecting external light pulses. The active polarization state is recovered after powering off and on the VCSEL, while memory is lost if the substrate temperature is varied.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Gibbs, Optical Bistability,Controlling Light With Light(Academic Press, 1985).
  2. H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diodes (Artech House, 1994).
  3. H. Kawaguchi, “Bistable Laser Diodes and Their Applications: State of the Art,” IEEE J. Sel. Top. Quantum Electron.3(5), 1254–1270 (1997).
    [CrossRef]
  4. M. J. Adams, A. Hurtado, D. Labukhin, and I. D. Henning, “Nonlinear semiconductor lasers and amplifiers for all-optical information processing,” Chaos20(3), 037102 (2010).
    [CrossRef] [PubMed]
  5. K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett.64(16), 2062 (1994)
    [CrossRef]
  6. K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron.1(2), 661–666 (1995).
    [CrossRef]
  7. H. Kawaguchi, I. S. Hidayat, Y. Takahashi, and Y. Yamayoshi, “Pitchfork bifurcation polarisation bistability in vertical-cavity surface-emitting lasers,” Electron. Lett.31(2), 109 (1995).
    [CrossRef]
  8. J. Sakaguchi, T. Katayama, and H. Kawaguchi, “All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals,” Opt. Express18(12), 12362–12370 (2010).
    [CrossRef] [PubMed]
  9. T. Katayama, A. Yanai, K. Yukawa, S. Hattori, K. Ikeda, S. Koh, and H. Kawaguchi, “All-optical flip-flop operation at 1-mA bias current in polarization bistable VCSELs with and oxide confinement structure,” IEEE Photon. Technol. Lett.23, 1811–1813 (2011).
    [CrossRef]
  10. M. Grabherr, R. Jäger, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, “Efficient single-mode oxide confined GaAs VCSELs emitting in the 850 nm wavelength regime,” IEEE Photon. Technol. Lett.9(10), 1304–1306 (1997).
    [CrossRef]
  11. K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.77(11), 1590–1592 (2000).
    [CrossRef]

2011 (1)

T. Katayama, A. Yanai, K. Yukawa, S. Hattori, K. Ikeda, S. Koh, and H. Kawaguchi, “All-optical flip-flop operation at 1-mA bias current in polarization bistable VCSELs with and oxide confinement structure,” IEEE Photon. Technol. Lett.23, 1811–1813 (2011).
[CrossRef]

2010 (2)

J. Sakaguchi, T. Katayama, and H. Kawaguchi, “All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals,” Opt. Express18(12), 12362–12370 (2010).
[CrossRef] [PubMed]

M. J. Adams, A. Hurtado, D. Labukhin, and I. D. Henning, “Nonlinear semiconductor lasers and amplifiers for all-optical information processing,” Chaos20(3), 037102 (2010).
[CrossRef] [PubMed]

2000 (1)

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.77(11), 1590–1592 (2000).
[CrossRef]

1997 (2)

H. Kawaguchi, “Bistable Laser Diodes and Their Applications: State of the Art,” IEEE J. Sel. Top. Quantum Electron.3(5), 1254–1270 (1997).
[CrossRef]

M. Grabherr, R. Jäger, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, “Efficient single-mode oxide confined GaAs VCSELs emitting in the 850 nm wavelength regime,” IEEE Photon. Technol. Lett.9(10), 1304–1306 (1997).
[CrossRef]

1995 (2)

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron.1(2), 661–666 (1995).
[CrossRef]

H. Kawaguchi, I. S. Hidayat, Y. Takahashi, and Y. Yamayoshi, “Pitchfork bifurcation polarisation bistability in vertical-cavity surface-emitting lasers,” Electron. Lett.31(2), 109 (1995).
[CrossRef]

1994 (1)

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett.64(16), 2062 (1994)
[CrossRef]

Adams, M. J.

M. J. Adams, A. Hurtado, D. Labukhin, and I. D. Henning, “Nonlinear semiconductor lasers and amplifiers for all-optical information processing,” Chaos20(3), 037102 (2010).
[CrossRef] [PubMed]

Choquette, K. D.

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron.1(2), 661–666 (1995).
[CrossRef]

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett.64(16), 2062 (1994)
[CrossRef]

Danckaert, J.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.77(11), 1590–1592 (2000).
[CrossRef]

Ebeling, K. J.

M. Grabherr, R. Jäger, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, “Efficient single-mode oxide confined GaAs VCSELs emitting in the 850 nm wavelength regime,” IEEE Photon. Technol. Lett.9(10), 1304–1306 (1997).
[CrossRef]

Georgievski, A.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.77(11), 1590–1592 (2000).
[CrossRef]

Grabherr, M.

M. Grabherr, R. Jäger, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, “Efficient single-mode oxide confined GaAs VCSELs emitting in the 850 nm wavelength regime,” IEEE Photon. Technol. Lett.9(10), 1304–1306 (1997).
[CrossRef]

Hattori, S.

T. Katayama, A. Yanai, K. Yukawa, S. Hattori, K. Ikeda, S. Koh, and H. Kawaguchi, “All-optical flip-flop operation at 1-mA bias current in polarization bistable VCSELs with and oxide confinement structure,” IEEE Photon. Technol. Lett.23, 1811–1813 (2011).
[CrossRef]

Henning, I. D.

M. J. Adams, A. Hurtado, D. Labukhin, and I. D. Henning, “Nonlinear semiconductor lasers and amplifiers for all-optical information processing,” Chaos20(3), 037102 (2010).
[CrossRef] [PubMed]

Hidayat, I. S.

H. Kawaguchi, I. S. Hidayat, Y. Takahashi, and Y. Yamayoshi, “Pitchfork bifurcation polarisation bistability in vertical-cavity surface-emitting lasers,” Electron. Lett.31(2), 109 (1995).
[CrossRef]

Hurtado, A.

M. J. Adams, A. Hurtado, D. Labukhin, and I. D. Henning, “Nonlinear semiconductor lasers and amplifiers for all-optical information processing,” Chaos20(3), 037102 (2010).
[CrossRef] [PubMed]

Ikeda, K.

T. Katayama, A. Yanai, K. Yukawa, S. Hattori, K. Ikeda, S. Koh, and H. Kawaguchi, “All-optical flip-flop operation at 1-mA bias current in polarization bistable VCSELs with and oxide confinement structure,” IEEE Photon. Technol. Lett.23, 1811–1813 (2011).
[CrossRef]

Jäger, R.

M. Grabherr, R. Jäger, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, “Efficient single-mode oxide confined GaAs VCSELs emitting in the 850 nm wavelength regime,” IEEE Photon. Technol. Lett.9(10), 1304–1306 (1997).
[CrossRef]

Katayama, T.

T. Katayama, A. Yanai, K. Yukawa, S. Hattori, K. Ikeda, S. Koh, and H. Kawaguchi, “All-optical flip-flop operation at 1-mA bias current in polarization bistable VCSELs with and oxide confinement structure,” IEEE Photon. Technol. Lett.23, 1811–1813 (2011).
[CrossRef]

J. Sakaguchi, T. Katayama, and H. Kawaguchi, “All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals,” Opt. Express18(12), 12362–12370 (2010).
[CrossRef] [PubMed]

Kawaguchi, H.

T. Katayama, A. Yanai, K. Yukawa, S. Hattori, K. Ikeda, S. Koh, and H. Kawaguchi, “All-optical flip-flop operation at 1-mA bias current in polarization bistable VCSELs with and oxide confinement structure,” IEEE Photon. Technol. Lett.23, 1811–1813 (2011).
[CrossRef]

J. Sakaguchi, T. Katayama, and H. Kawaguchi, “All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals,” Opt. Express18(12), 12362–12370 (2010).
[CrossRef] [PubMed]

H. Kawaguchi, “Bistable Laser Diodes and Their Applications: State of the Art,” IEEE J. Sel. Top. Quantum Electron.3(5), 1254–1270 (1997).
[CrossRef]

H. Kawaguchi, I. S. Hidayat, Y. Takahashi, and Y. Yamayoshi, “Pitchfork bifurcation polarisation bistability in vertical-cavity surface-emitting lasers,” Electron. Lett.31(2), 109 (1995).
[CrossRef]

Koh, S.

T. Katayama, A. Yanai, K. Yukawa, S. Hattori, K. Ikeda, S. Koh, and H. Kawaguchi, “All-optical flip-flop operation at 1-mA bias current in polarization bistable VCSELs with and oxide confinement structure,” IEEE Photon. Technol. Lett.23, 1811–1813 (2011).
[CrossRef]

Labukhin, D.

M. J. Adams, A. Hurtado, D. Labukhin, and I. D. Henning, “Nonlinear semiconductor lasers and amplifiers for all-optical information processing,” Chaos20(3), 037102 (2010).
[CrossRef] [PubMed]

Lear, K. L.

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron.1(2), 661–666 (1995).
[CrossRef]

Leibenguth, R. E.

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron.1(2), 661–666 (1995).
[CrossRef]

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett.64(16), 2062 (1994)
[CrossRef]

Michalzik, R.

M. Grabherr, R. Jäger, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, “Efficient single-mode oxide confined GaAs VCSELs emitting in the 850 nm wavelength regime,” IEEE Photon. Technol. Lett.9(10), 1304–1306 (1997).
[CrossRef]

Nagler, B.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.77(11), 1590–1592 (2000).
[CrossRef]

Panajotov, K.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.77(11), 1590–1592 (2000).
[CrossRef]

Reiner, G.

M. Grabherr, R. Jäger, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, “Efficient single-mode oxide confined GaAs VCSELs emitting in the 850 nm wavelength regime,” IEEE Photon. Technol. Lett.9(10), 1304–1306 (1997).
[CrossRef]

Richie, D. A.

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett.64(16), 2062 (1994)
[CrossRef]

Sakaguchi, J.

Schneider, R. P.

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron.1(2), 661–666 (1995).
[CrossRef]

Takahashi, Y.

H. Kawaguchi, I. S. Hidayat, Y. Takahashi, and Y. Yamayoshi, “Pitchfork bifurcation polarisation bistability in vertical-cavity surface-emitting lasers,” Electron. Lett.31(2), 109 (1995).
[CrossRef]

Thienpont, H.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.77(11), 1590–1592 (2000).
[CrossRef]

Veretennicoff, I.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.77(11), 1590–1592 (2000).
[CrossRef]

Verschaffelt, G.

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.77(11), 1590–1592 (2000).
[CrossRef]

Weigl, B.

M. Grabherr, R. Jäger, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, “Efficient single-mode oxide confined GaAs VCSELs emitting in the 850 nm wavelength regime,” IEEE Photon. Technol. Lett.9(10), 1304–1306 (1997).
[CrossRef]

Yamayoshi, Y.

H. Kawaguchi, I. S. Hidayat, Y. Takahashi, and Y. Yamayoshi, “Pitchfork bifurcation polarisation bistability in vertical-cavity surface-emitting lasers,” Electron. Lett.31(2), 109 (1995).
[CrossRef]

Yanai, A.

T. Katayama, A. Yanai, K. Yukawa, S. Hattori, K. Ikeda, S. Koh, and H. Kawaguchi, “All-optical flip-flop operation at 1-mA bias current in polarization bistable VCSELs with and oxide confinement structure,” IEEE Photon. Technol. Lett.23, 1811–1813 (2011).
[CrossRef]

Yukawa, K.

T. Katayama, A. Yanai, K. Yukawa, S. Hattori, K. Ikeda, S. Koh, and H. Kawaguchi, “All-optical flip-flop operation at 1-mA bias current in polarization bistable VCSELs with and oxide confinement structure,” IEEE Photon. Technol. Lett.23, 1811–1813 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

K. D. Choquette, D. A. Richie, and R. E. Leibenguth, “Temperature dependence of gain-guided vertical-cavity surface emitting laser polarization,” Appl. Phys. Lett.64(16), 2062 (1994)
[CrossRef]

K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, “Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett.77(11), 1590–1592 (2000).
[CrossRef]

Chaos (1)

M. J. Adams, A. Hurtado, D. Labukhin, and I. D. Henning, “Nonlinear semiconductor lasers and amplifiers for all-optical information processing,” Chaos20(3), 037102 (2010).
[CrossRef] [PubMed]

Electron. Lett. (1)

H. Kawaguchi, I. S. Hidayat, Y. Takahashi, and Y. Yamayoshi, “Pitchfork bifurcation polarisation bistability in vertical-cavity surface-emitting lasers,” Electron. Lett.31(2), 109 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron.1(2), 661–666 (1995).
[CrossRef]

H. Kawaguchi, “Bistable Laser Diodes and Their Applications: State of the Art,” IEEE J. Sel. Top. Quantum Electron.3(5), 1254–1270 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Katayama, A. Yanai, K. Yukawa, S. Hattori, K. Ikeda, S. Koh, and H. Kawaguchi, “All-optical flip-flop operation at 1-mA bias current in polarization bistable VCSELs with and oxide confinement structure,” IEEE Photon. Technol. Lett.23, 1811–1813 (2011).
[CrossRef]

M. Grabherr, R. Jäger, R. Michalzik, B. Weigl, G. Reiner, and K. J. Ebeling, “Efficient single-mode oxide confined GaAs VCSELs emitting in the 850 nm wavelength regime,” IEEE Photon. Technol. Lett.9(10), 1304–1306 (1997).
[CrossRef]

Opt. Express (1)

Other (2)

H. Gibbs, Optical Bistability,Controlling Light With Light(Academic Press, 1985).

H. Kawaguchi, Bistabilities and Nonlinearities in Laser Diodes (Artech House, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental set-up with the three different schemes used for controlling the polarization. C: collimator, λ/2 waveplate, D: Detector, BS: Polarization preserving beamsplitter, PBS: Polarizing beam splitter, FR: Faraday rotator, P: Polarizer, F: Variable neutral density filter, M: Mirror, OI: Optical Isolator, ML: Master Laser.

Fig. 2
Fig. 2

Polarization resolved L/I curves versus T (red trace LP-x, blue trace LP-y). a) T = 40°C and then T is decreased to T = 30°C(b), T = 25°C (c) and to T = 15°C (d) then T is increased to T = 25°C (e)and T = 40°C (f).

Fig. 3
Fig. 3

LP-x (red trace), LP-y (blue trace) polarization intensities and XPR signal injected into the VCSEL (green trace), T = 30°C, I = 2.1mA, XPR rate = 2%.

Fig. 4
Fig. 4

LP-x (red trace), LP-y (blue trace) polarization intensities and PSF signal injected into the VCSEL (green trace), for clarity green trace is shifted vertically of 0.1 units. T = 30°C, I = 2.9mA.

Fig. 5
Fig. 5

LP-y polarization (blue trace) and injected external signal (green trace).In panel b) the green trace is magnified vertically of a factor of 30 with respect to panel a). I = 2.1 mA, T = 30°C.

Fig. 6
Fig. 6

Laser driving current (green curve, right axis) and LP-x polarization intensity (red curve, left axis), T = 30°C, exposure to XPR is indicated by the blue pulse.

Metrics