Abstract

A highly efficient grating structure for the coupling between standard optical fibers and single-mode waveguides in the silicon-on-insulator platform realized in a CMOS fabrication process is presented. The cost-effective method introduces a backside metal mirror to the grating coupler without need of an extensive wafer-to-wafer bonding. A coupling efficiency of −1.6 dB (around 69%) near the telecommunication wavelength 1550 nm and a large 1dB-bandwidth of 48 nm are achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  2. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett.15(9), 1249–1251 (2003).
    [CrossRef]
  3. Z. Wang, Y. Tang, L. Wosinski, and S. He, “Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a Bragg reflector underneath,” IEEE Photon. Technol. Lett.22(21), 1568–1570 (2010).
    [CrossRef]
  4. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaets, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006).
    [CrossRef]
  5. S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland, CTuC6 (2009).
  6. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Kraus, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
    [CrossRef]
  7. C. Kopp, E. Augendre, R. Orobtchouk, O. Lemonnier, and J. M. Fedeli, “Enhanced fiber grating coupler integrated by wafer-to-wafer bonding,” J. Lightwave Technol.29(12), 1847–1851 (2011).
    [CrossRef]
  8. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express18(17), 18278–18283 (2010).
    [CrossRef] [PubMed]
  9. http://www.rsoftdesign.com/
  10. Patent pending.
  11. http://www.soitec.com/
  12. J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
    [CrossRef]
  13. http://www.cargille.com/

2011

2010

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

Z. Wang, Y. Tang, L. Wosinski, and S. He, “Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a Bragg reflector underneath,” IEEE Photon. Technol. Lett.22(21), 1568–1570 (2010).
[CrossRef]

2007

2006

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaets, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

2004

2003

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

1999

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Absil, P.

Augendre, E.

Ayre, M.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Kraus, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
[CrossRef]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaets, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

Baets, R.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Kraus, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
[CrossRef]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaets, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaets, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

Bogaerts, W.

Bogaets, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaets, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Butschke, J.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Ehrmann, A.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Fedeli, J. M.

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

He, S.

Z. Wang, Y. Tang, L. Wosinski, and S. He, “Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a Bragg reflector underneath,” IEEE Photon. Technol. Lett.22(21), 1568–1570 (2010).
[CrossRef]

Höfflinger, B.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Irmscher, M.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Käsmaier, R.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Kopp, C.

Kraus, T. F.

Lemonnier, O.

Lepage, G.

Letzkus, F.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Löschner, H.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Mathuni, J.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Orobtchouk, R.

Reuter, C.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Roelkens, G.

Schomburg, C.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Schrauwen, J.

Selvaraja, S.

Springer, R.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Taillaert, D.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Kraus, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
[CrossRef]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaets, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Tang, Y.

Z. Wang, Y. Tang, L. Wosinski, and S. He, “Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a Bragg reflector underneath,” IEEE Photon. Technol. Lett.22(21), 1568–1570 (2010).
[CrossRef]

Van Laere, F.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Kraus, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
[CrossRef]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaets, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

Van Thourhout, D.

Verheyen, P.

Vermeulen, D.

Wang, Z.

Z. Wang, Y. Tang, L. Wosinski, and S. He, “Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a Bragg reflector underneath,” IEEE Photon. Technol. Lett.22(21), 1568–1570 (2010).
[CrossRef]

Wosinski, L.

Z. Wang, Y. Tang, L. Wosinski, and S. He, “Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a Bragg reflector underneath,” IEEE Photon. Technol. Lett.22(21), 1568–1570 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Z. Wang, Y. Tang, L. Wosinski, and S. He, “Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a Bragg reflector underneath,” IEEE Photon. Technol. Lett.22(21), 1568–1570 (2010).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaets, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45(8A), 6071–6077 (2006).
[CrossRef]

Micr. Eng.

J. Butschke, A. Ehrmann, B. Höfflinger, M. Irmscher, R. Käsmaier, F. Letzkus, H. Löschner, J. Mathuni, C. Reuter, C. Schomburg, and R. Springer, “SOI wafer flow process for stencil mask fabrication,” Micr. Eng.46(1-4), 473–476 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Other

http://www.cargille.com/

http://www.rsoftdesign.com/

Patent pending.

http://www.soitec.com/

S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics, Baltimore, Maryland, CTuC6 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Three dimensional cross section of the proposed grating coupler. (b) Simulated coupling efficiency of the coupler with Λ = 600 nm and α = 9° versus the BOX-thickness at a wavelength of 1550 nm. (c) Electric field distribution of the structure with dBOX = 3 µm.

Fig. 2
Fig. 2

Simulated normalized transmission of the launched power onto the grating coupler (a) without the metal mirror, and (b) with the metal mirror on the backside. For both couplers Λ = 600 nm, α = 9°, and dBOX = 3 µm.

Fig. 3
Fig. 3

(a) Microscopic picture of the fabricated structure composed of two grating couplers with backside mirrors and connected by a waveguide. (b) Front and back side view of the metal mirror.

Fig. 4
Fig. 4

Measured coupling efficiency of 3 different grating couplers with Λ = 595 nm, 600 nm, 605 nm with a metal mirror underneath at a fiber tilt angle of 8°. The zoom-in shows the high coupling efficiency of −1.63 dB at 1539 nm achieved by the coupler having a period of 600 nm.

Fig. 5
Fig. 5

Measured coupling efficiency of the designed grating coupler with and without the backside metal mirror.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k in sinα+m 2π Λ =β
η dB = 1 2 ( P in,dBm P out,dBm a S a W L )

Metrics