Abstract

We propose an asynchronous gigabit-symmetric optical code division multiplexing access passive optical network (OCDMA-PON) in which optical network units (ONUs) are source-free. In the experiment, we demonstrate a duplex OCDMA system with a 50 km 10 Gbit/s/user 4-user DPSK-OCDMA downlink and a 50 km 10 Gbit/s/user 4-user OOK-OCDMA uplink and error-free duplex transmissions are achieved. Besides, we investigate an all-optical self-clocked time gate, which is used for the signal regeneration of decoded signals and ensures asynchronization in the up/downstream transmissions. Furthermore, we evaluate the power budget of the proposed duplex transmission.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON—solution path to gigabit-symmetric FTTH,” J. Lightwave Technol.24(4), 1654–1662 (2006).
    [CrossRef]
  2. Z. A. El-Sahn, B. J. Shastri, Z. Ming, N. Kheder, D. V. Plant, and L. A. Rusch, “Experimental demonstration of a SAC-OCDMA PON with burst-mode reception: local versus centralized sources,” J. Lightwave Technol.26(10), 1192–1203 (2008).
    [CrossRef]
  3. N. Kataoka, N. Wada, X. Wang, G. Cincotti, A. Sakamoto, Y. Terada, T. Miyazaki, and K. Kitayama, “Field trial of duplex, 10 Gbps x 8-user DPSK-OCDMA system using a single 16x16 multi-port encoder/decoder and 16-level phase-shifted SSFBG encoder/decoders,” J. Lightwave Technol.27(3), 299–305 (2009).
    [CrossRef]
  4. J. Liu, D. Zeng, C. Guo, L. Xu, and S. He, “OCDMA PON supporting ONU inter-networking based on gain-switched Fabry-Pérot lasers with external dual-wavelength injection,” Opt. Express18(22), 22982–22987 (2010).
    [CrossRef] [PubMed]
  5. P. J. Urban, B. Huiszoon, R. Roy, M. M. de Laat, F. M. Huijskens, E. J. Klein, G. D. Khoe, A. M. J. Koonen, and H. de Waardt, “High-bit-rate dynamically reconfigurable WDM-TDM access network,” J. Opt. Commun. Netw.1(2), A143–A159 (2009).
    [CrossRef]
  6. G. Cincotti, N. Kataoka, N. Wada, X. Wang, T. Miyazaki, and K. Kitayama, “Demonstration of asynchronous, 10Gbps OCDMA PON system with colorless and sourceless ONUs,” in 35th European Conference and Exhibition on Optical Communication (ECOC 2009), Vienna, Austria, paper 6.5.7 (2009).
  7. W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett.15(10), 1476–1478 (2003).
    [CrossRef]
  8. C. W. Chow, “Wavelength remodulation using DPSK down-and-upstream with high extinction ratio for 10-Gb/s DWDM-passive optical networks,” IEEE Photon. Technol. Lett.20(1), 12–14 (2008).
    [CrossRef]
  9. J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
    [CrossRef]
  10. B. Dai, S. Shimizu, X. Wang, and N. Wada, “Full-asynchronous gigabit-symmetric OCDMA-PON with source-free ONUs based on DPSK downstream and remodulated OOK upstream links,” in 38th European Conference and Exhibition on Optical Communication (ECOC 2012), Amsterdam, the Netherlands, paper Mo.1.B.5 (2012).
  11. P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven and 63-Chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol.19(9), 1352–1365 (2001).
    [CrossRef]
  12. B. Dai, Z. Gao, X. Wang, N. Kataoka, and N. Wada, “Performance comparison of 0/π- and ± π/2-phase-shifted superstructured Fiber Bragg grating en/decoder,” Opt. Express19(13), 12248–12260 (2011).
    [CrossRef] [PubMed]
  13. G. Cincotti, N. Wada, and K. Kitayama, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers — part I: modeling and design,” J. Lightwave Technol.24(1), 103–112 (2006).
    [CrossRef]
  14. A. Agarwal, P. Toliver, R. Menendez, S. Etemad, J. Jackel, J. Young, T. Banwell, B. E. Little, S. T. Chu, W. Chen, W. Chen, J. Hryniewicz, F. Johnson, D. Gill, O. King, R. Davidson, K. Donovan, and P. J. Delfyett, “Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications,” J. Lightwave Technol.24(1), 77–87 (2006).
    [CrossRef]
  15. X. Wang and Z. Gao, “Novel reconfigurable 2-dimensional coherent optical en/decoder based on coupled micro-ring reflector,” IEEE Photon. Technol. Lett.23(9), 591–593 (2011).
    [CrossRef]
  16. I. Widjaja, “Performance analysis of burst admission-control protocols,” IEE Proc. Commun.142(1), 7–14 (1995).
    [CrossRef]
  17. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron.6(6), 1428–1435 (2000).
    [CrossRef]
  18. V. J. Hernandez, W. Cong, J. Hu, C. Yang, N. K. Fontaine, R. P. Scott, Z. Ding, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, “A 320-Gb/s capacity (32-user×10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightwave Technol.25(1), 79–86 (2007).
    [CrossRef]
  19. K. L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett.9(6), 830–832 (1997).
    [CrossRef]
  20. N. Wada, H. Sotobayashi, and K. Kitayama, “Error-free 100km transmission at 10Gbit/s in optical code division multiplexing system using BPSK picosecond-pulse code sequence with novel time-gating detection,” Electron. Lett.35(10), 833–834 (1999).
    [CrossRef]
  21. X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, “Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system,” Opt. Express13(14), 5499–5505 (2005).
    [CrossRef] [PubMed]
  22. R. Elschner, C.-A. Bunge, and K. Petermann, “System impact of cascaded all-optical wavelength conversion of D(Q)PSK signals in transparent optical networks,” J. Netw.5, 219–224 (2010).
  23. Y. Ma, Y. Qian, G. Peng, X. Zhou, X. Wang, J. Yu, Y. Luo, X. Yan, and F. Effenberger, “Demonstration of a 40Gb/s time and wavelength division multiplexed passive optical network prototype system,” in Optical Fiber Communication Conference (OFC), Los Angeles, California, paper PDP5D (2012).
  24. X. Wang, K. Matsushima, A. Nishiki, N. Wada, and K. Kitayama, “High reflectivity superstructured FBG for coherent optical code generation and recognition,” Opt. Express12(22), 5457–5468 (2004).
    [CrossRef] [PubMed]

2011

X. Wang and Z. Gao, “Novel reconfigurable 2-dimensional coherent optical en/decoder based on coupled micro-ring reflector,” IEEE Photon. Technol. Lett.23(9), 591–593 (2011).
[CrossRef]

B. Dai, Z. Gao, X. Wang, N. Kataoka, and N. Wada, “Performance comparison of 0/π- and ± π/2-phase-shifted superstructured Fiber Bragg grating en/decoder,” Opt. Express19(13), 12248–12260 (2011).
[CrossRef] [PubMed]

2010

J. Liu, D. Zeng, C. Guo, L. Xu, and S. He, “OCDMA PON supporting ONU inter-networking based on gain-switched Fabry-Pérot lasers with external dual-wavelength injection,” Opt. Express18(22), 22982–22987 (2010).
[CrossRef] [PubMed]

R. Elschner, C.-A. Bunge, and K. Petermann, “System impact of cascaded all-optical wavelength conversion of D(Q)PSK signals in transparent optical networks,” J. Netw.5, 219–224 (2010).

2009

2008

Z. A. El-Sahn, B. J. Shastri, Z. Ming, N. Kheder, D. V. Plant, and L. A. Rusch, “Experimental demonstration of a SAC-OCDMA PON with burst-mode reception: local versus centralized sources,” J. Lightwave Technol.26(10), 1192–1203 (2008).
[CrossRef]

C. W. Chow, “Wavelength remodulation using DPSK down-and-upstream with high extinction ratio for 10-Gb/s DWDM-passive optical networks,” IEEE Photon. Technol. Lett.20(1), 12–14 (2008).
[CrossRef]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

2007

2006

2005

2004

2003

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett.15(10), 1476–1478 (2003).
[CrossRef]

2001

2000

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron.6(6), 1428–1435 (2000).
[CrossRef]

1999

N. Wada, H. Sotobayashi, and K. Kitayama, “Error-free 100km transmission at 10Gbit/s in optical code division multiplexing system using BPSK picosecond-pulse code sequence with novel time-gating detection,” Electron. Lett.35(10), 833–834 (1999).
[CrossRef]

1997

K. L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett.9(6), 830–832 (1997).
[CrossRef]

1995

I. Widjaja, “Performance analysis of burst admission-control protocols,” IEE Proc. Commun.142(1), 7–14 (1995).
[CrossRef]

Agarwal, A.

Banwell, T.

Bunge, C.-A.

R. Elschner, C.-A. Bunge, and K. Petermann, “System impact of cascaded all-optical wavelength conversion of D(Q)PSK signals in transparent optical networks,” J. Netw.5, 219–224 (2010).

Chan, C. K.

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett.15(10), 1476–1478 (2003).
[CrossRef]

Chang, G. K.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chen, L.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Chen, L. K.

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett.15(10), 1476–1478 (2003).
[CrossRef]

Chen, W.

Chow, C. W.

C. W. Chow, “Wavelength remodulation using DPSK down-and-upstream with high extinction ratio for 10-Gb/s DWDM-passive optical networks,” IEEE Photon. Technol. Lett.20(1), 12–14 (2008).
[CrossRef]

Chu, S. T.

Cincotti, G.

Cong, W.

Dai, B.

Davidson, R.

de Laat, M. M.

de Waardt, H.

Delfyett, P. J.

Deng, K. L.

K. L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett.9(6), 830–832 (1997).
[CrossRef]

Ding, Z.

Donovan, K.

El-Sahn, Z. A.

Elschner, R.

R. Elschner, C.-A. Bunge, and K. Petermann, “System impact of cascaded all-optical wavelength conversion of D(Q)PSK signals in transparent optical networks,” J. Netw.5, 219–224 (2010).

Etemad, S.

Fontaine, N. K.

Gao, Z.

B. Dai, Z. Gao, X. Wang, N. Kataoka, and N. Wada, “Performance comparison of 0/π- and ± π/2-phase-shifted superstructured Fiber Bragg grating en/decoder,” Opt. Express19(13), 12248–12260 (2011).
[CrossRef] [PubMed]

X. Wang and Z. Gao, “Novel reconfigurable 2-dimensional coherent optical en/decoder based on coupled micro-ring reflector,” IEEE Photon. Technol. Lett.23(9), 591–593 (2011).
[CrossRef]

Gill, D.

Glesk, I.

K. L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett.9(6), 830–832 (1997).
[CrossRef]

Guo, C.

Hamanaka, T.

He, S.

Heritage, J. P.

Hernandez, V. J.

Hryniewicz, J.

Hu, J.

Huang, M. F.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Huijskens, F. M.

Huiszoon, B.

Hung, W.

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett.15(10), 1476–1478 (2003).
[CrossRef]

Ibsen, M.

Jackel, J.

Johnson, F.

Kang, K. I.

K. L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett.9(6), 830–832 (1997).
[CrossRef]

Kataoka, N.

Kheder, N.

Khoe, G. D.

King, O.

Kitayama, K.

Klein, E. J.

Kolner, B. H.

Koonen, A. M. J.

Little, B. E.

Liu, J.

Matsushima, K.

Menendez, R.

Ming, Z.

Miyazaki, T.

Nishiki, A.

Petermann, K.

R. Elschner, C.-A. Bunge, and K. Petermann, “System impact of cascaded all-optical wavelength conversion of D(Q)PSK signals in transparent optical networks,” J. Netw.5, 219–224 (2010).

Petropoulos, P.

Plant, D. V.

Prucnal, P. R.

K. L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett.9(6), 830–832 (1997).
[CrossRef]

Qian, D.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Richardson, D. J.

Roy, R.

Rusch, L. A.

Sakamoto, A.

Scott, R. P.

Shastri, B. J.

Sotobayashi, H.

N. Wada, H. Sotobayashi, and K. Kitayama, “Error-free 100km transmission at 10Gbit/s in optical code division multiplexing system using BPSK picosecond-pulse code sequence with novel time-gating detection,” Electron. Lett.35(10), 833–834 (1999).
[CrossRef]

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron.6(6), 1428–1435 (2000).
[CrossRef]

Teh, P. C.

Terada, Y.

Toliver, P.

Tong, F.

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett.15(10), 1476–1478 (2003).
[CrossRef]

Urban, P. J.

Wada, N.

B. Dai, Z. Gao, X. Wang, N. Kataoka, and N. Wada, “Performance comparison of 0/π- and ± π/2-phase-shifted superstructured Fiber Bragg grating en/decoder,” Opt. Express19(13), 12248–12260 (2011).
[CrossRef] [PubMed]

N. Kataoka, N. Wada, X. Wang, G. Cincotti, A. Sakamoto, Y. Terada, T. Miyazaki, and K. Kitayama, “Field trial of duplex, 10 Gbps x 8-user DPSK-OCDMA system using a single 16x16 multi-port encoder/decoder and 16-level phase-shifted SSFBG encoder/decoders,” J. Lightwave Technol.27(3), 299–305 (2009).
[CrossRef]

G. Cincotti, N. Wada, and K. Kitayama, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers — part I: modeling and design,” J. Lightwave Technol.24(1), 103–112 (2006).
[CrossRef]

K. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON—solution path to gigabit-symmetric FTTH,” J. Lightwave Technol.24(4), 1654–1662 (2006).
[CrossRef]

X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, “Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system,” Opt. Express13(14), 5499–5505 (2005).
[CrossRef] [PubMed]

X. Wang, K. Matsushima, A. Nishiki, N. Wada, and K. Kitayama, “High reflectivity superstructured FBG for coherent optical code generation and recognition,” Opt. Express12(22), 5457–5468 (2004).
[CrossRef] [PubMed]

N. Wada, H. Sotobayashi, and K. Kitayama, “Error-free 100km transmission at 10Gbit/s in optical code division multiplexing system using BPSK picosecond-pulse code sequence with novel time-gating detection,” Electron. Lett.35(10), 833–834 (1999).
[CrossRef]

Wang, X.

Widjaja, I.

I. Widjaja, “Performance analysis of burst admission-control protocols,” IEE Proc. Commun.142(1), 7–14 (1995).
[CrossRef]

Xu, L.

Yang, C.

Yoo, S. J. B.

Young, J.

Yu, J.

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

Zeng, D.

Electron. Lett.

N. Wada, H. Sotobayashi, and K. Kitayama, “Error-free 100km transmission at 10Gbit/s in optical code division multiplexing system using BPSK picosecond-pulse code sequence with novel time-gating detection,” Electron. Lett.35(10), 833–834 (1999).
[CrossRef]

IEE Proc. Commun.

I. Widjaja, “Performance analysis of burst admission-control protocols,” IEE Proc. Commun.142(1), 7–14 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron.6(6), 1428–1435 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Hung, C. K. Chan, L. K. Chen, and F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photon. Technol. Lett.15(10), 1476–1478 (2003).
[CrossRef]

C. W. Chow, “Wavelength remodulation using DPSK down-and-upstream with high extinction ratio for 10-Gb/s DWDM-passive optical networks,” IEEE Photon. Technol. Lett.20(1), 12–14 (2008).
[CrossRef]

J. Yu, M. F. Huang, D. Qian, L. Chen, and G. K. Chang, “Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals,” IEEE Photon. Technol. Lett.20(18), 1545–1547 (2008).
[CrossRef]

X. Wang and Z. Gao, “Novel reconfigurable 2-dimensional coherent optical en/decoder based on coupled micro-ring reflector,” IEEE Photon. Technol. Lett.23(9), 591–593 (2011).
[CrossRef]

K. L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett.9(6), 830–832 (1997).
[CrossRef]

J. Lightwave Technol.

K. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON—solution path to gigabit-symmetric FTTH,” J. Lightwave Technol.24(4), 1654–1662 (2006).
[CrossRef]

Z. A. El-Sahn, B. J. Shastri, Z. Ming, N. Kheder, D. V. Plant, and L. A. Rusch, “Experimental demonstration of a SAC-OCDMA PON with burst-mode reception: local versus centralized sources,” J. Lightwave Technol.26(10), 1192–1203 (2008).
[CrossRef]

N. Kataoka, N. Wada, X. Wang, G. Cincotti, A. Sakamoto, Y. Terada, T. Miyazaki, and K. Kitayama, “Field trial of duplex, 10 Gbps x 8-user DPSK-OCDMA system using a single 16x16 multi-port encoder/decoder and 16-level phase-shifted SSFBG encoder/decoders,” J. Lightwave Technol.27(3), 299–305 (2009).
[CrossRef]

V. J. Hernandez, W. Cong, J. Hu, C. Yang, N. K. Fontaine, R. P. Scott, Z. Ding, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, “A 320-Gb/s capacity (32-user×10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction,” J. Lightwave Technol.25(1), 79–86 (2007).
[CrossRef]

G. Cincotti, N. Wada, and K. Kitayama, “Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers — part I: modeling and design,” J. Lightwave Technol.24(1), 103–112 (2006).
[CrossRef]

A. Agarwal, P. Toliver, R. Menendez, S. Etemad, J. Jackel, J. Young, T. Banwell, B. E. Little, S. T. Chu, W. Chen, W. Chen, J. Hryniewicz, F. Johnson, D. Gill, O. King, R. Davidson, K. Donovan, and P. J. Delfyett, “Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications,” J. Lightwave Technol.24(1), 77–87 (2006).
[CrossRef]

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven and 63-Chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” J. Lightwave Technol.19(9), 1352–1365 (2001).
[CrossRef]

J. Netw.

R. Elschner, C.-A. Bunge, and K. Petermann, “System impact of cascaded all-optical wavelength conversion of D(Q)PSK signals in transparent optical networks,” J. Netw.5, 219–224 (2010).

J. Opt. Commun. Netw.

Opt. Express

Other

Y. Ma, Y. Qian, G. Peng, X. Zhou, X. Wang, J. Yu, Y. Luo, X. Yan, and F. Effenberger, “Demonstration of a 40Gb/s time and wavelength division multiplexed passive optical network prototype system,” in Optical Fiber Communication Conference (OFC), Los Angeles, California, paper PDP5D (2012).

B. Dai, S. Shimizu, X. Wang, and N. Wada, “Full-asynchronous gigabit-symmetric OCDMA-PON with source-free ONUs based on DPSK downstream and remodulated OOK upstream links,” in 38th European Conference and Exhibition on Optical Communication (ECOC 2012), Amsterdam, the Netherlands, paper Mo.1.B.5 (2012).

G. Cincotti, N. Kataoka, N. Wada, X. Wang, T. Miyazaki, and K. Kitayama, “Demonstration of asynchronous, 10Gbps OCDMA PON system with colorless and sourceless ONUs,” in 35th European Conference and Exhibition on Optical Communication (ECOC 2009), Vienna, Austria, paper 6.5.7 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Diagram of the proposed OCDMA-PON architecture.

Fig. 2
Fig. 2

Setup of the self-clocked time gate.

Fig. 3
Fig. 3

Operation principle of the self-clocked time gate.

Fig. 4
Fig. 4

Experimental setup of the duplex multi-user OCDMA system: a 50 km 4-user 10 Gbit/s/user DPSK downstream link and a 50 km 4-user 10 Gbit/s/user OOK upstream link.

Fig. 5
Fig. 5

Downlink waveforms of (a) 4-user multiplexing encoded signal, (b)–(c) signals after decoding, and (f)–(i) signals after time gate.

Fig. 6
Fig. 6

Uplink waveforms of (a) 4-user multiplexing encoded signal and (b) signal after decoding.

Fig. 7
Fig. 7

Eye diagrams of (a)–(d) downstream signals after decoding, (e)–(h) downstream signals after time gate and (i)–(k) upstream signals without coding, for single user and 4-user.

Fig. 8
Fig. 8

BER performances in the situations of (a) back-to-back and (b) 50 km uplink and 50 km downlink.

Fig. 9
Fig. 9

Experimental setup of multi-user DPSKOCDMA system.

Fig. 10
Fig. 10

Experimental measurement of system improvement by using the time gate.

Fig. 11
Fig. 11

Power budget model.

Fig. 12
Fig. 12

Relationship between transmission distance and total number of users

Tables (1)

Tables Icon

Table 1 Power contribution of each component

Metrics