Abstract

A highly integrated 40Gbit/s coherent optical receiver is reported using a Costas loop as a homodyne optical phase locked loop (OPLL). A photonic IC, an electrical IC, and a hybrid loop filter are characterized, and the feedback loop system is fully analyzed to build a stable homodyne OPLL. All components are integrated on a single substrate within the compact size of 10 × 10mm2, and a 1.1GHz loop bandwidth and a 120psloop delay are achieved. The binary phase-shift keying receiver exhibits error-free (BER<10−12) up to 35Gbit/s and BER<10−7 for 40Gbit/s with no latency, and consumes less than 3W power.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi, “Coherent optical communications: historical perspectives and future directions,” in High spectral Density Optical Communication Technology, (Springer, 2010), Chap. 2.
  2. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon.1(2), 279–307 (2009).
    [CrossRef]
  3. K. Kikuchi, M. Fukase, and S. Kim, “Electronic post-compensation for nonlinear phase noise in a 1000-km 20-Gbit/s optical QPSK transmission system using the homodyne receiver with digital signal processing,” OFC’2007 conference, OTuA2 (2007).
  4. White paper - Driving 100G to the metro: http://www.multi-phy.com/en-us/home.aspx .
  5. T. Sakamoto, A. Chiba, A. Kanno, I. Morohashi, and T. Kawanishi, “Real-time homodyne reception of 40-Gb/s BPSK signal by digital optical phase-locked loop,”ECOC’2010 conference, P3.12 (2010).
  6. M. Grant, W. Michie, and M. Fletcher, “The performance of optical phase locked loops in the presence of nonnegligible loop propagation delay,” J. Lightwave Technol.5(4), 592–597 (1987).
    [CrossRef]
  7. T. Hodgkinson, “Costas loop analysis for coherent optical receivers,” Electron. Lett.22(7), 394–396 (1986).
    [CrossRef]
  8. L. Kazovsky, “Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements,” J. Lightwave Technol.4(2), 182–195 (1986).
    [CrossRef]
  9. S. Norimatsu and K. Iwashita, “PLL Propagation delay-time influence on linewidthrequirements of optical PSK homodyne detection,” J. Lightwave Technol.9(10), 1367–1375 (1991).
    [CrossRef]
  10. S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol.28(4), 526–538 (2010).
    [CrossRef]
  11. R. J. Steed, F. Pozzi, M. J. Fice, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector,” Opt. Express19(21), 20048–20053 (2011).
    [CrossRef] [PubMed]
  12. M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express20(9), 9736–9741 (2012).
    [CrossRef] [PubMed]
  13. H. Philipp, A. Scholtz, E. Bonek, and W. Leeb, “Costas loop experiments for a 10.6 um communications receiver,” IEEE Trans. Commun.31(8), 1000–1002 (1983).
    [CrossRef]
  14. S. Norimatsu, K. Iwashita, and K. Sato, “PSK optical homodyne detection using external cavity laser diodes in Costas loop,” IEEE Photon. Technol. Lett.2(5), 374–376 (1990).
    [CrossRef]
  15. L. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: performance analysis and laser linewidth requirements,” J. Lightwave Technol.3(6), 1238–1247 (1985).
    [CrossRef]
  16. V. Ferrero and S. Camatel, “Optical phase locking techniques: an overview and a novel method based on single side sub-carrier modulation,” Opt. Express16(2), 818–828 (2008).
    [CrossRef] [PubMed]
  17. H. Park, M. Lu, E. Bloch, T. Reed, Z. Griffith, L. Johansson, L. Coldren, and M. Rodwell, “40Gbit/s coherent optical receiver using a Costas loop,” ECOC’2012 conference, PD Th.3.A, (2012).
  18. M. Lu, H. Park, E. Bloch, A. Sivananthan, J. Parker, Z. Griffith, L. A. Johansson, M. Rodwell, and L. Coldren, “A photonic integrated circuit for a 40 Gbaud/s homodyne receiver using an optical Costas loop,” IPC’2012 conference, PD-4, (2012).
  19. M. Urteaga, R. Pierson, P. Rowell, M. Choe, D. Mensa, and B. Brar, “Advanced InP DHBT process for high speed LSI circuits,” IPRM 2008. 20th International conference, 1–5 (2008).
  20. D. G. Messerschmitt, “Frequency detectors for PLL acquisition in timing and carrier recovery,” IEEE Trans. Commun.27(9), 1288–1295 (1979).
    [CrossRef]
  21. E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, and M. Rodwell, “A 1-20 GHz all-Digital InP HBT optical wavelength synthesis IC,” IEEE Trans. Microw. Theory Tech. (to be published).
  22. R. C. Walker, “Designing bang-bang PLLs for clock and data recovery in serial data transmission systems,” in phase-locking in high-performance systems, B. Razavi, Ed. New York: IEEE Press,34–45 (2003).
  23. J. Crossley and E. Alon, “An energy-efficient Digital phase-locked loop with linear phase control,” (2010), http://bwrc.eecs.berkeley.edu/php/pubs/pubs.php/1294.html .

2012

2011

2010

2009

2008

1991

S. Norimatsu and K. Iwashita, “PLL Propagation delay-time influence on linewidthrequirements of optical PSK homodyne detection,” J. Lightwave Technol.9(10), 1367–1375 (1991).
[CrossRef]

1990

S. Norimatsu, K. Iwashita, and K. Sato, “PSK optical homodyne detection using external cavity laser diodes in Costas loop,” IEEE Photon. Technol. Lett.2(5), 374–376 (1990).
[CrossRef]

1987

M. Grant, W. Michie, and M. Fletcher, “The performance of optical phase locked loops in the presence of nonnegligible loop propagation delay,” J. Lightwave Technol.5(4), 592–597 (1987).
[CrossRef]

1986

T. Hodgkinson, “Costas loop analysis for coherent optical receivers,” Electron. Lett.22(7), 394–396 (1986).
[CrossRef]

L. Kazovsky, “Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements,” J. Lightwave Technol.4(2), 182–195 (1986).
[CrossRef]

1985

L. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: performance analysis and laser linewidth requirements,” J. Lightwave Technol.3(6), 1238–1247 (1985).
[CrossRef]

1983

H. Philipp, A. Scholtz, E. Bonek, and W. Leeb, “Costas loop experiments for a 10.6 um communications receiver,” IEEE Trans. Commun.31(8), 1000–1002 (1983).
[CrossRef]

1979

D. G. Messerschmitt, “Frequency detectors for PLL acquisition in timing and carrier recovery,” IEEE Trans. Commun.27(9), 1288–1295 (1979).
[CrossRef]

Bhardwaj, A.

Bloch, E.

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express20(9), 9736–9741 (2012).
[CrossRef] [PubMed]

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, and M. Rodwell, “A 1-20 GHz all-Digital InP HBT optical wavelength synthesis IC,” IEEE Trans. Microw. Theory Tech. (to be published).

Bonek, E.

H. Philipp, A. Scholtz, E. Bonek, and W. Leeb, “Costas loop experiments for a 10.6 um communications receiver,” IEEE Trans. Commun.31(8), 1000–1002 (1983).
[CrossRef]

Camatel, S.

Cannard, P. J.

Coldren, L.

S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol.28(4), 526–538 (2010).
[CrossRef]

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, and M. Rodwell, “A 1-20 GHz all-Digital InP HBT optical wavelength synthesis IC,” IEEE Trans. Microw. Theory Tech. (to be published).

Coldren, L. A.

Cronin, R.

Ferrero, V.

Fice, M. J.

Fletcher, M.

M. Grant, W. Michie, and M. Fletcher, “The performance of optical phase locked loops in the presence of nonnegligible loop propagation delay,” J. Lightwave Technol.5(4), 592–597 (1987).
[CrossRef]

Grant, M.

M. Grant, W. Michie, and M. Fletcher, “The performance of optical phase locked loops in the presence of nonnegligible loop propagation delay,” J. Lightwave Technol.5(4), 592–597 (1987).
[CrossRef]

Griffith, Z.

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express20(9), 9736–9741 (2012).
[CrossRef] [PubMed]

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, and M. Rodwell, “A 1-20 GHz all-Digital InP HBT optical wavelength synthesis IC,” IEEE Trans. Microw. Theory Tech. (to be published).

Hodgkinson, T.

T. Hodgkinson, “Costas loop analysis for coherent optical receivers,” Electron. Lett.22(7), 394–396 (1986).
[CrossRef]

Iwashita, K.

S. Norimatsu and K. Iwashita, “PLL Propagation delay-time influence on linewidthrequirements of optical PSK homodyne detection,” J. Lightwave Technol.9(10), 1367–1375 (1991).
[CrossRef]

S. Norimatsu, K. Iwashita, and K. Sato, “PSK optical homodyne detection using external cavity laser diodes in Costas loop,” IEEE Photon. Technol. Lett.2(5), 374–376 (1990).
[CrossRef]

Johansson, L.

S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol.28(4), 526–538 (2010).
[CrossRef]

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, and M. Rodwell, “A 1-20 GHz all-Digital InP HBT optical wavelength synthesis IC,” IEEE Trans. Microw. Theory Tech. (to be published).

Johansson, L. A.

Johnston, L.

Kazovsky, L.

L. Kazovsky, “Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements,” J. Lightwave Technol.4(2), 182–195 (1986).
[CrossRef]

L. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: performance analysis and laser linewidth requirements,” J. Lightwave Technol.3(6), 1238–1247 (1985).
[CrossRef]

Lealman, I. F.

Leeb, W.

H. Philipp, A. Scholtz, E. Bonek, and W. Leeb, “Costas loop experiments for a 10.6 um communications receiver,” IEEE Trans. Commun.31(8), 1000–1002 (1983).
[CrossRef]

Li, G.

Lu, M.

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express20(9), 9736–9741 (2012).
[CrossRef] [PubMed]

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, and M. Rodwell, “A 1-20 GHz all-Digital InP HBT optical wavelength synthesis IC,” IEEE Trans. Microw. Theory Tech. (to be published).

Lynch, C.

Messerschmitt, D. G.

D. G. Messerschmitt, “Frequency detectors for PLL acquisition in timing and carrier recovery,” IEEE Trans. Commun.27(9), 1288–1295 (1979).
[CrossRef]

Michie, W.

M. Grant, W. Michie, and M. Fletcher, “The performance of optical phase locked loops in the presence of nonnegligible loop propagation delay,” J. Lightwave Technol.5(4), 592–597 (1987).
[CrossRef]

Moodie, D. G.

Naglic, L.

Norimatsu, S.

S. Norimatsu and K. Iwashita, “PLL Propagation delay-time influence on linewidthrequirements of optical PSK homodyne detection,” J. Lightwave Technol.9(10), 1367–1375 (1991).
[CrossRef]

S. Norimatsu, K. Iwashita, and K. Sato, “PSK optical homodyne detection using external cavity laser diodes in Costas loop,” IEEE Photon. Technol. Lett.2(5), 374–376 (1990).
[CrossRef]

Park, H.

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express20(9), 9736–9741 (2012).
[CrossRef] [PubMed]

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, and M. Rodwell, “A 1-20 GHz all-Digital InP HBT optical wavelength synthesis IC,” IEEE Trans. Microw. Theory Tech. (to be published).

Pavlovic, L.

Philipp, H.

H. Philipp, A. Scholtz, E. Bonek, and W. Leeb, “Costas loop experiments for a 10.6 um communications receiver,” IEEE Trans. Commun.31(8), 1000–1002 (1983).
[CrossRef]

Pozzi, F.

Reed, T.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, and M. Rodwell, “A 1-20 GHz all-Digital InP HBT optical wavelength synthesis IC,” IEEE Trans. Microw. Theory Tech. (to be published).

Renaud, C. C.

Ristic, S.

Ritter, D.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, and M. Rodwell, “A 1-20 GHz all-Digital InP HBT optical wavelength synthesis IC,” IEEE Trans. Microw. Theory Tech. (to be published).

Robertson, M. J.

Rodwell, M.

S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol.28(4), 526–538 (2010).
[CrossRef]

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, and M. Rodwell, “A 1-20 GHz all-Digital InP HBT optical wavelength synthesis IC,” IEEE Trans. Microw. Theory Tech. (to be published).

Rodwell, M. J.

Rogers, D. C.

Sato, K.

S. Norimatsu, K. Iwashita, and K. Sato, “PSK optical homodyne detection using external cavity laser diodes in Costas loop,” IEEE Photon. Technol. Lett.2(5), 374–376 (1990).
[CrossRef]

Scholtz, A.

H. Philipp, A. Scholtz, E. Bonek, and W. Leeb, “Costas loop experiments for a 10.6 um communications receiver,” IEEE Trans. Commun.31(8), 1000–1002 (1983).
[CrossRef]

Seeds, A. J.

Sivananthan, A.

Steed, R. J.

Vidmar, M.

Adv. Opt. Photon.

Electron. Lett.

T. Hodgkinson, “Costas loop analysis for coherent optical receivers,” Electron. Lett.22(7), 394–396 (1986).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Norimatsu, K. Iwashita, and K. Sato, “PSK optical homodyne detection using external cavity laser diodes in Costas loop,” IEEE Photon. Technol. Lett.2(5), 374–376 (1990).
[CrossRef]

IEEE Trans. Commun.

D. G. Messerschmitt, “Frequency detectors for PLL acquisition in timing and carrier recovery,” IEEE Trans. Commun.27(9), 1288–1295 (1979).
[CrossRef]

H. Philipp, A. Scholtz, E. Bonek, and W. Leeb, “Costas loop experiments for a 10.6 um communications receiver,” IEEE Trans. Commun.31(8), 1000–1002 (1983).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

E. Bloch, H. Park, M. Lu, T. Reed, Z. Griffith, L. Johansson, L. Coldren, D. Ritter, and M. Rodwell, “A 1-20 GHz all-Digital InP HBT optical wavelength synthesis IC,” IEEE Trans. Microw. Theory Tech. (to be published).

J. Lightwave Technol.

L. Kazovsky, “Decision-driven phase-locked loop for optical homodyne receivers: performance analysis and laser linewidth requirements,” J. Lightwave Technol.3(6), 1238–1247 (1985).
[CrossRef]

L. Kazovsky, “Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements,” J. Lightwave Technol.4(2), 182–195 (1986).
[CrossRef]

S. Norimatsu and K. Iwashita, “PLL Propagation delay-time influence on linewidthrequirements of optical PSK homodyne detection,” J. Lightwave Technol.9(10), 1367–1375 (1991).
[CrossRef]

S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol.28(4), 526–538 (2010).
[CrossRef]

M. Grant, W. Michie, and M. Fletcher, “The performance of optical phase locked loops in the presence of nonnegligible loop propagation delay,” J. Lightwave Technol.5(4), 592–597 (1987).
[CrossRef]

Opt. Express

Other

H. Park, M. Lu, E. Bloch, T. Reed, Z. Griffith, L. Johansson, L. Coldren, and M. Rodwell, “40Gbit/s coherent optical receiver using a Costas loop,” ECOC’2012 conference, PD Th.3.A, (2012).

M. Lu, H. Park, E. Bloch, A. Sivananthan, J. Parker, Z. Griffith, L. A. Johansson, M. Rodwell, and L. Coldren, “A photonic integrated circuit for a 40 Gbaud/s homodyne receiver using an optical Costas loop,” IPC’2012 conference, PD-4, (2012).

M. Urteaga, R. Pierson, P. Rowell, M. Choe, D. Mensa, and B. Brar, “Advanced InP DHBT process for high speed LSI circuits,” IPRM 2008. 20th International conference, 1–5 (2008).

R. C. Walker, “Designing bang-bang PLLs for clock and data recovery in serial data transmission systems,” in phase-locking in high-performance systems, B. Razavi, Ed. New York: IEEE Press,34–45 (2003).

J. Crossley and E. Alon, “An energy-efficient Digital phase-locked loop with linear phase control,” (2010), http://bwrc.eecs.berkeley.edu/php/pubs/pubs.php/1294.html .

K. Kikuchi, M. Fukase, and S. Kim, “Electronic post-compensation for nonlinear phase noise in a 1000-km 20-Gbit/s optical QPSK transmission system using the homodyne receiver with digital signal processing,” OFC’2007 conference, OTuA2 (2007).

White paper - Driving 100G to the metro: http://www.multi-phy.com/en-us/home.aspx .

T. Sakamoto, A. Chiba, A. Kanno, I. Morohashi, and T. Kawanishi, “Real-time homodyne reception of 40-Gb/s BPSK signal by digital optical phase-locked loop,”ECOC’2010 conference, P3.12 (2010).

K. Kikuchi, “Coherent optical communications: historical perspectives and future directions,” in High spectral Density Optical Communication Technology, (Springer, 2010), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A concept schematic for a homodyne OPLL structure using a Costas loop.

Fig. 2
Fig. 2

Modeling for the OPLL analysis.

Fig. 3
Fig. 3

A Bode diagram for the OPLL open loop response T(s).

Fig. 4
Fig. 4

A photograph of the Costas loop based on a homodyne OPLL receiver (Red arrow: feed-forward path).

Fig. 5
Fig. 5

Homodyne OPLL measurement results (a) Beat spectrum between the reference laser and locked SG-DBR laser, and (b) Measured linewidths: locked SG-DBR laser without BPSK modulation, locked SG-DBR laser with BPSK modulation, un-locked SG-DBR laser, and reference laser.

Fig. 6
Fig. 6

BPSK data reception tests: (a) Received eye output for 25Gbit/s, (b) Received eye output for 40Gbit/s, and (c) BER vs. OSNR from 20Gbit/s to 40Gbit/s.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(s)= K PD K CCO 1 τ tune s+1 ( τ 2 s+1 τ 1 s 2 1 τ OP s+1 1 R e τ d_OP s + C FF 2 ) e τ d s ,

Metrics