Abstract

The generation of differential-phase-shift keying (DPSK) signals is demonstrated using a directly modulated passive feedback laser at 10.709-Gb/s, 14-Gb/s and 16-Gb/s. The quality of the DPSK signals is assessed using both noncoherent detection for a bit rate of 10.709-Gb/s and coherent detection with digital signal processing involving a look-up table pattern-dependent distortion compensator. Transmission over a passive link consisting of 100 km of single mode fiber at a bit rate of 10.709-Gb/s is achieved with a received optical power of −45 dBm at a bit-error-ratio of 3.8 × 10−3 and a 49 dB loss margin.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rohde, S. Smolorz, J. S. Wey, and E. Gottwald, “Coherent optical access networks,” Proc. Conference on Optical Fiber Communication, paper OTuB1 (2011).
  2. C. Wree, S. Bhandare, D. Becker, D. Mohr, and A. Joshi, “Repeaterless 10.7-Gb/s DPSK transmission over 304 km of SSMF using a coherent receiver and electronic dispersion compensation,” IEEE Photon. Technol. Lett.20(6), 407–409 (2008).
    [CrossRef]
  3. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23(1), 115–130 (2005).
    [CrossRef]
  4. R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
    [CrossRef]
  5. J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photon. Technol. Lett.24(5), 362–364 (2012).
    [CrossRef]
  6. J. Kreissl, U. Troppenz, W. Rehbein, T. Gaertner, P. Harde, and M. Radziunas, “40 Gbit/s directly modulated passive feedback laser with complex-coupled DFB section,” Proc. European Conference on Optical Communication, We8.1.4. (2007).
  7. A. S. Karar, Y. Gao, K. P. Zhong, J. H. Ke, and J. C. Cartledge, “Generation of DPSK signals using a directly modulated passive feedback laser,” Proc. European Conference on Optical Communication, Tu.4.A.1 (2012).
  8. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  9. H. Meyer, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers ,(Wiley-Interscience, 1997).
  10. M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: a tutorial review,” Eur. Trans. Telecommun. Relat. Technol.9(2), 103–116 (1998).
    [CrossRef]
  11. Y. Gao, A. P. T. Lau, S. Yan, and C. Lu, “Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems,” Opt. Express19(22), 21717–21729 (2011).
    [CrossRef] [PubMed]
  12. C. Li, Z. Zhang, F. Zhu, and Y. S. Bai, “Method and apparatus for carrier phase estimation and correction in a coherent optical system,” US. Patent Application No. 0008952 A1 (2012).
  13. A. S. Karar, M. Yañez, Y. Jiang, J. C. Cartledge, J. Harley, and K. Roberts, “Electronic dispersion pre-compensation for 10.709-Gb/s using a look-up table and a directly modulated laser,” Opt. Express19(26), B81–B89 (2011).
    [CrossRef] [PubMed]

2012 (1)

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photon. Technol. Lett.24(5), 362–364 (2012).
[CrossRef]

2011 (2)

2008 (2)

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express16(2), 804–817 (2008).
[CrossRef] [PubMed]

C. Wree, S. Bhandare, D. Becker, D. Mohr, and A. Joshi, “Repeaterless 10.7-Gb/s DPSK transmission over 304 km of SSMF using a coherent receiver and electronic dispersion compensation,” IEEE Photon. Technol. Lett.20(6), 407–409 (2008).
[CrossRef]

2005 (1)

1998 (1)

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: a tutorial review,” Eur. Trans. Telecommun. Relat. Technol.9(2), 103–116 (1998).
[CrossRef]

1990 (1)

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

Becker, D.

C. Wree, S. Bhandare, D. Becker, D. Mohr, and A. Joshi, “Repeaterless 10.7-Gb/s DPSK transmission over 304 km of SSMF using a coherent receiver and electronic dispersion compensation,” IEEE Photon. Technol. Lett.20(6), 407–409 (2008).
[CrossRef]

Bhandare, S.

C. Wree, S. Bhandare, D. Becker, D. Mohr, and A. Joshi, “Repeaterless 10.7-Gb/s DPSK transmission over 304 km of SSMF using a coherent receiver and electronic dispersion compensation,” IEEE Photon. Technol. Lett.20(6), 407–409 (2008).
[CrossRef]

Cartledge, J. C.

Elrefaie, A. F.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

Gaertner, T.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photon. Technol. Lett.24(5), 362–364 (2012).
[CrossRef]

Gao, Y.

Gimlett, J. L.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

Gnauck, A. H.

Harley, J.

Iqbal, M. Z.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

Jiang, Y.

Joshi, A.

C. Wree, S. Bhandare, D. Becker, D. Mohr, and A. Joshi, “Repeaterless 10.7-Gb/s DPSK transmission over 304 km of SSMF using a coherent receiver and electronic dispersion compensation,” IEEE Photon. Technol. Lett.20(6), 407–409 (2008).
[CrossRef]

Karar, A. S.

Kreissl, J.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photon. Technol. Lett.24(5), 362–364 (2012).
[CrossRef]

Lau, A. P. T.

Lu, C.

Mengali, U.

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: a tutorial review,” Eur. Trans. Telecommun. Relat. Technol.9(2), 103–116 (1998).
[CrossRef]

Mohr, D.

C. Wree, S. Bhandare, D. Becker, D. Mohr, and A. Joshi, “Repeaterless 10.7-Gb/s DPSK transmission over 304 km of SSMF using a coherent receiver and electronic dispersion compensation,” IEEE Photon. Technol. Lett.20(6), 407–409 (2008).
[CrossRef]

Morelli, M.

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: a tutorial review,” Eur. Trans. Telecommun. Relat. Technol.9(2), 103–116 (1998).
[CrossRef]

Roberts, K.

Savory, S. J.

Schell, M.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photon. Technol. Lett.24(5), 362–364 (2012).
[CrossRef]

Troppenz, U.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photon. Technol. Lett.24(5), 362–364 (2012).
[CrossRef]

Tsuji, S.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

Vercesi, V.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photon. Technol. Lett.24(5), 362–364 (2012).
[CrossRef]

Vodhanel, R. S.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

Wagner, R. E.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

Wenisch, W.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photon. Technol. Lett.24(5), 362–364 (2012).
[CrossRef]

Winzer, P. J.

Wree, C.

C. Wree, S. Bhandare, D. Becker, D. Mohr, and A. Joshi, “Repeaterless 10.7-Gb/s DPSK transmission over 304 km of SSMF using a coherent receiver and electronic dispersion compensation,” IEEE Photon. Technol. Lett.20(6), 407–409 (2008).
[CrossRef]

Yan, S.

Yañez, M.

Eur. Trans. Telecommun. Relat. Technol. (1)

M. Morelli and U. Mengali, “Feedforward frequency estimation for PSK: a tutorial review,” Eur. Trans. Telecommun. Relat. Technol.9(2), 103–116 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. Wree, S. Bhandare, D. Becker, D. Mohr, and A. Joshi, “Repeaterless 10.7-Gb/s DPSK transmission over 304 km of SSMF using a coherent receiver and electronic dispersion compensation,” IEEE Photon. Technol. Lett.20(6), 407–409 (2008).
[CrossRef]

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photon. Technol. Lett.24(5), 362–364 (2012).
[CrossRef]

J. Lightwave Technol. (2)

A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol.23(1), 115–130 (2005).
[CrossRef]

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

Opt. Express (3)

Other (5)

J. Kreissl, U. Troppenz, W. Rehbein, T. Gaertner, P. Harde, and M. Radziunas, “40 Gbit/s directly modulated passive feedback laser with complex-coupled DFB section,” Proc. European Conference on Optical Communication, We8.1.4. (2007).

A. S. Karar, Y. Gao, K. P. Zhong, J. H. Ke, and J. C. Cartledge, “Generation of DPSK signals using a directly modulated passive feedback laser,” Proc. European Conference on Optical Communication, Tu.4.A.1 (2012).

H. Rohde, S. Smolorz, J. S. Wey, and E. Gottwald, “Coherent optical access networks,” Proc. Conference on Optical Fiber Communication, paper OTuB1 (2011).

H. Meyer, M. Moeneclaey, and S. A. Fechtel, Digital Communications Receivers ,(Wiley-Interscience, 1997).

C. Li, Z. Zhang, F. Zhu, and Y. S. Bai, “Method and apparatus for carrier phase estimation and correction in a coherent optical system,” US. Patent Application No. 0008952 A1 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Block diagram of experimental set-up. DAC: digital-to-analog converter; RF: radio-frequency; FB: feedback; PFL: passive feedback laser; DFB: distributed feedback laser; SMF: single mode fiber; VOA: variable optical attenuator; EDFA: erbium doped fiber amplifier; PC: polarization controller; LO: local oscillator; ADC: analog-to-digital converter; DSP: digital signal processing; AGC: automatic gain control.

Fig. 2
Fig. 2

DPSK generation using a DML. (a) Operating point and drive current. (b) Output intensity, chirp and phase.

Fig. 3
Fig. 3

Measured adiabatic chirp and extinction ratio dependence on the feedback current under 1-Gb/s modulation. IDFB = 60 mA.

Fig. 4
Fig. 4

IM response of the PFL at IFB = 1 mA and IFB = 10 mA. IDFB = 60 mA.

Fig. 5
Fig. 5

Unwrapped phase of the coherently detected 10.709-Gb/s DPSK signal.

Fig. 6
Fig. 6

Block-diagram of a decision directed LUT for pattern-dependent phase distortion compensation. (Phase estimates at the output of the pre-decision block are distinguished with a tilde).

Fig. 7
Fig. 7

PFL-DPSK at 10.709-Gb/s. (a) Eye-diagram of electrical drive signal (time-span 300 ps). (b) Eye-diagram after noncoherent detection (time-span 300 ps). (c) Output optical spectrum measured with 0.06 GHz resolution bandwidth.

Fig. 8
Fig. 8

PFL-DPSK at 10.709-Gb/s (coherent detection). (a) Constellation diagram after initial phase estimation. (b) Constellation diagram after LUT distortion compensation. (c) Phase correction at each LUT address.

Fig. 9
Fig. 9

Dependence of BER on ROP at 10.709-Gb/s with noncoherent and coherent detection at back-to-back and after 100 km of SMF transmission. The FEC limit at BER = 3.8 × 10−3 is also shown.

Fig. 10
Fig. 10

Constellation diagrams of received DPSK signal at (a) 14-Gb/s and (b) 16-Gb/s.

Metrics