Abstract

We propose arrayed optical amplifiers that share a single pump laser with the aim of realizing full-add/drop colorless, directionless, contentionless ROADM nodes and demonstrate its feasibility in experiments. The experimental results show that the fabricated arrayed optical amplifiers can be made to correspond properly to wavelength path reconfigurations by adjusting a splitting ratio of the variable splitter between the pump laser and eight EDFAs, and cause no significant penalty for 128-Gbit/s PDM-QPSK signal transmission.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
    [CrossRef]
  2. R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” ECOC 2010, Mo.2.D.2 (2010).
  3. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. B. Yu, and G. Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8×8 matrix switch,” OFC/NFOEC 2011, OTuM2 (2011).
  4. R. Jensen, A. Lord, and N. Parsons, “Highly scalable OXC-based contentionless ROADM architecture with reduced network implementation costs,” OFC/NFOEC 2012, NW3F.7 (2012).
  5. Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, T. Kataoka, T. Watanabe, and Y. Ishii, “Experimental demonstration of multi-degree colorless, directionless, contentionless ROADM for 127-Gbit/s PDM-QPSK transmission system,” Opt. Express19(26), B1–B11 (2011).
    [CrossRef] [PubMed]
  6. W. I. Way, “Optimum architecture for M×N multicast switch-based colorless, directionless, contentionless, and flexible-grid ROADM,” OFC/NFOEC 2012, NW3F.5 (2012).
  7. G. J. Cowle, and M. Bolshtyansky, Optical amplifier trends for CDC node network architectures,” OECC 2012, 6D2–4 (2012).
  8. Y. Sakamaki, T. Kawai, M. Fukutoku, T. Kataoka, and K. Suzuki, “Full-add/drop C/D/C-less ROADM achieved by developing arrayed optical amplifiers with a shared pump laser,” ECOC 2012, P3.03 (2012).
  9. D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplest for metro and access applications,” J. Lightwave Technol.22(1), 63–70 (2004).
    [CrossRef]
  10. M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).
  11. T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” OFC/NFOEC 2012, OTh3D.1 (2012).
  12. Y. Ishii, K. Hadama, J. Yamaguchi, Y. Kawajiri, E. Hashimoto, T. Matsuura, and F. Shimokawa, “MEMS-based 1×43 wavelength-selective switch with flat passband,” ECOC 2009, PD 1.9 (2009).
  13. Optical Internetworking Forum, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” (2010). http://www.oiforum.com/public/documents/OIF-DPC-RX-01.0.pdf .
  14. Optical Internetworking Forum, “Implementation agreement for integrated polarization multiplexed quadrature modulated transmitters,” (2010). http://www.oiforum.com/public/documents/OIF-PMQ-TX-01.0.pdf .
  15. Y. Hashizume, Y. Inoue, T. Kominato, T. Shibata, and M. Okuno, “Low-PDL 16-channel variable optical attenuator array using silica-based PLC,” OFC2004, WC4 (2004).
  16. K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol.14(10), 2301–2310 (1996).
    [CrossRef]
  17. H. Ono, T. Watanabe, K. Suzuki, A. Mori, T. Takahashi, and T. Sakamoto, “An erbium-doped fibre amplifier with widely variable gain employing integrated components on a planar lightwave circuit,” ECOC 2011, Th. 11. LeCervin. 6. (2011).
  18. K. Murata, T. Saida, K. Sano, I. Ogawa, H. Fukuyama, R. Kasahara, Y. Muramoto, H. Nosaka, S. Tsunashima, T. Mizuno, H. Tanobe, K. Hattori, T. Yoshimatsu, H. Kawakami, and E. Yoshida, “100-Gbit/s PDM-QPSK coherent receiver with wide dynamic range and excellent common-mode rejection ratio,” Opt. Express19(26), B125–B130 (2011).
    [CrossRef] [PubMed]

2011 (2)

2010 (1)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

2008 (1)

M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).

2004 (2)

Y. Hashizume, Y. Inoue, T. Kominato, T. Shibata, and M. Okuno, “Low-PDL 16-channel variable optical attenuator array using silica-based PLC,” OFC2004, WC4 (2004).

D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplest for metro and access applications,” J. Lightwave Technol.22(1), 63–70 (2004).
[CrossRef]

1996 (1)

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol.14(10), 2301–2310 (1996).
[CrossRef]

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

Bolshtyansky, M.

M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).

Cheng, H.

M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).

Colbourne, P.

M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).

Cowle, G.

M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).

Dong, Z. W.

M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).

Dougherty, D.

M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

Fukutoku, M.

Fukuyama, H.

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

Hashizume, Y.

Y. Hashizume, Y. Inoue, T. Kominato, T. Shibata, and M. Okuno, “Low-PDL 16-channel variable optical attenuator array using silica-based PLC,” OFC2004, WC4 (2004).

Hattori, K.

Hida, Y.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol.14(10), 2301–2310 (1996).
[CrossRef]

Huang, K. Y.

M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).

Inoue, Y.

Y. Hashizume, Y. Inoue, T. Kominato, T. Shibata, and M. Okuno, “Low-PDL 16-channel variable optical attenuator array using silica-based PLC,” OFC2004, WC4 (2004).

Ishii, Y.

Jinguji, K.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol.14(10), 2301–2310 (1996).
[CrossRef]

Kasahara, R.

Kataoka, T.

Kawachi, M.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol.14(10), 2301–2310 (1996).
[CrossRef]

Kawai, T.

Kawakami, H.

Kitoh, T.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol.14(10), 2301–2310 (1996).
[CrossRef]

Kominato, T.

Y. Hashizume, Y. Inoue, T. Kominato, T. Shibata, and M. Okuno, “Low-PDL 16-channel variable optical attenuator array using silica-based PLC,” OFC2004, WC4 (2004).

Komukai, T.

Mizuno, T.

Muramoto, Y.

Murata, K.

Nosaka, H.

Ogawa, I.

Okuno, M.

Y. Hashizume, Y. Inoue, T. Kominato, T. Shibata, and M. Okuno, “Low-PDL 16-channel variable optical attenuator array using silica-based PLC,” OFC2004, WC4 (2004).

Saida, T.

Sakamaki, Y.

Sano, K.

Shibata, T.

Y. Hashizume, Y. Inoue, T. Kominato, T. Shibata, and M. Okuno, “Low-PDL 16-channel variable optical attenuator array using silica-based PLC,” OFC2004, WC4 (2004).

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

Spiekman, L. H.

Takato, N.

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol.14(10), 2301–2310 (1996).
[CrossRef]

Tanobe, H.

Tsunashima, S.

Watanabe, T.

Wills, G.

M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

Yoshida, E.

Yoshimatsu, T.

Zimmerman, D. R.

IEEE Commun. Mag. (1)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag.48(7), 40–50 (2010).
[CrossRef]

J. Lightwave Technol. (2)

D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplest for metro and access applications,” J. Lightwave Technol.22(1), 63–70 (2004).
[CrossRef]

K. Jinguji, N. Takato, Y. Hida, T. Kitoh, and M. Kawachi, “Two-port optical wavelength circuits composed of cascaded Mach-Zehnder interferometers with point-symmetrical configurations,” J. Lightwave Technol.14(10), 2301–2310 (1996).
[CrossRef]

OFC (2)

Y. Hashizume, Y. Inoue, T. Kominato, T. Shibata, and M. Okuno, “Low-PDL 16-channel variable optical attenuator array using silica-based PLC,” OFC2004, WC4 (2004).

M. Bolshtyansky, H. Cheng, P. Colbourne, Z. W. Dong, D. Dougherty, K. Y. Huang, G. Wills, and G. Cowle, “Planar waveguide integrated EDFA,” OFC2008, PDP17 (2008).

Opt. Express (2)

Other (11)

W. I. Way, “Optimum architecture for M×N multicast switch-based colorless, directionless, contentionless, and flexible-grid ROADM,” OFC/NFOEC 2012, NW3F.5 (2012).

G. J. Cowle, and M. Bolshtyansky, Optical amplifier trends for CDC node network architectures,” OECC 2012, 6D2–4 (2012).

Y. Sakamaki, T. Kawai, M. Fukutoku, T. Kataoka, and K. Suzuki, “Full-add/drop C/D/C-less ROADM achieved by developing arrayed optical amplifiers with a shared pump laser,” ECOC 2012, P3.03 (2012).

R. Jensen, A. Lord, and N. Parsons, “Colourless, directionless, contentionless ROADM architecture using low-loss optical matrix switches,” ECOC 2010, Mo.2.D.2 (2010).

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. B. Yu, and G. Q. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8×8 matrix switch,” OFC/NFOEC 2011, OTuM2 (2011).

R. Jensen, A. Lord, and N. Parsons, “Highly scalable OXC-based contentionless ROADM architecture with reduced network implementation costs,” OFC/NFOEC 2012, NW3F.7 (2012).

H. Ono, T. Watanabe, K. Suzuki, A. Mori, T. Takahashi, and T. Sakamoto, “An erbium-doped fibre amplifier with widely variable gain employing integrated components on a planar lightwave circuit,” ECOC 2011, Th. 11. LeCervin. 6. (2011).

T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” OFC/NFOEC 2012, OTh3D.1 (2012).

Y. Ishii, K. Hadama, J. Yamaguchi, Y. Kawajiri, E. Hashimoto, T. Matsuura, and F. Shimokawa, “MEMS-based 1×43 wavelength-selective switch with flat passband,” ECOC 2009, PD 1.9 (2009).

Optical Internetworking Forum, “Implementation agreement for integrated dual polarization intradyne coherent receivers,” (2010). http://www.oiforum.com/public/documents/OIF-DPC-RX-01.0.pdf .

Optical Internetworking Forum, “Implementation agreement for integrated polarization multiplexed quadrature modulated transmitters,” (2010). http://www.oiforum.com/public/documents/OIF-PMQ-TX-01.0.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Configuration of C/D/C-less ROADM node

Fig. 2
Fig. 2

Level diagram of signal power for (a) drop and (b) add side

Fig. 3
Fig. 3

Configuration of C/D/C-less ROADM node with additional amplifiers

Fig. 4
Fig. 4

Configuration of C/D/C-less ROADM node with AOA

Fig. 5
Fig. 5

Configuration of our proposed AOA

Fig. 6
Fig. 6

Measured gain and noise figure for (a) drop and (b) add-side AOA

Fig. 7
Fig. 7

Attenuation value of VOA for (a) drop and (b) add-side AOA

Fig. 8
Fig. 8

Measured BER for (a) drop and (b) add-side AOA

Fig. 9
Fig. 9

Surviving channel power transients for switching times of (a) 200 ms and (b) 250 ns

Fig. 10
Fig. 10

Experimental demonstration of wavelength path reconfiguration (a) concept (b) configurations of wavelength paths (c) measured Q-factor

Tables (1)

Tables Icon

Table 1 Estimated numbers of wavelength channels and amplifier modules

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R add/drop = (pM+1)qr M N ch ,
P pump,m = N ch,m PrP,
m=1 M P pump,m = m=1 M ( N ch,m P)rP.

Metrics