Abstract

A compact second-order Stokes Brillouin fiber laser made of microstructured chalcogenide fiber is reported for the first time. This laser required very low pump power for Stokes conversion: 6 mW for first order lasing and only 30 mW for second order lasing with nonresonant pumping. We also show linewidth-narrowing as well as intensity noise reduction for both the 1st and 2nd order Stokes component when compared to that of the pump source.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Boschung, L. Thevenaz, and P. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett.30(18), 1488–1489 (1994).
    [CrossRef]
  2. L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.19(5), 1055–1066 (2002).
    [CrossRef]
  3. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
    [CrossRef]
  4. S. Molin, G. Baili, M. Alouini, D. Dolfi, and J.-P. Huignard, “Experimental investigation of relative intensity noise in Brillouin fiber ring lasers for microwave photonics applications,” Opt. Lett.33(15), 1681–1683 (2008).
    [CrossRef] [PubMed]
  5. F. Zarinetchi, S. P. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Opt. Lett.16(4), 229–231 (1991).
    [CrossRef] [PubMed]
  6. A. Debut, S. Randoux, and J. Zemmouri, “Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.18(4), 556–567 (2001).
    [CrossRef]
  7. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  8. K. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express13(25), 10266–10271 (2005).
    [CrossRef] [PubMed]
  9. K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett., 37(7), 1157–1159 (2012).
    [CrossRef] [PubMed]
  10. P. Toupin, L. Brilland, J. Trolès, and J. Adam, “Small core ge-as-se microstructured optical fiber with single-mode propagation and low optical losses,” Opt. Mater. Express2(10), 1359–1366 (2012)
    [CrossRef]
  11. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, and M. El Amraoui, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010).
    [CrossRef] [PubMed]
  12. K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core chalcogenide fiber,” Proc. SPIE Photonics Europe 20128426, 73–83 (2012).
  13. A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol.20(8), 1425–1432 (2002).
    [CrossRef]
  14. L. Stokes, M. Chodorow, and H. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett.7(10), 509–511 (1982).
    [CrossRef] [PubMed]
  15. L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” J. Quantum Electron.22(11), 2070–2074 (2002).
    [CrossRef]
  16. J. Poette, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fibre laser,” Electron. Lett.40(12), 724–726 (2004).
    [CrossRef]

2012 (3)

2010 (1)

2008 (1)

2006 (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

2005 (1)

2004 (1)

J. Poette, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fibre laser,” Electron. Lett.40(12), 724–726 (2004).
[CrossRef]

2002 (3)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” J. Quantum Electron.22(11), 2070–2074 (2002).
[CrossRef]

L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.19(5), 1055–1066 (2002).
[CrossRef]

A. Yeniay, J. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol.20(8), 1425–1432 (2002).
[CrossRef]

2001 (1)

A. Debut, S. Randoux, and J. Zemmouri, “Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.18(4), 556–567 (2001).
[CrossRef]

1994 (1)

J. Boschung, L. Thevenaz, and P. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett.30(18), 1488–1489 (1994).
[CrossRef]

1991 (1)

1982 (1)

Abedin, K.

Adam, J.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Alouini, M.

Baili, G.

Besnard, P.

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core chalcogenide fiber,” Proc. SPIE Photonics Europe 20128426, 73–83 (2012).

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett., 37(7), 1157–1159 (2012).
[CrossRef] [PubMed]

J. Poette, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fibre laser,” Electron. Lett.40(12), 724–726 (2004).
[CrossRef]

Blake, M.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

Blin, S.

J. Poette, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fibre laser,” Electron. Lett.40(12), 724–726 (2004).
[CrossRef]

Boschung, J.

J. Boschung, L. Thevenaz, and P. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett.30(18), 1488–1489 (1994).
[CrossRef]

Bramerie, L.

J. Poette, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fibre laser,” Electron. Lett.40(12), 724–726 (2004).
[CrossRef]

Brilland, L.

Brochu, G.

J. Poette, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fibre laser,” Electron. Lett.40(12), 724–726 (2004).
[CrossRef]

Calvez, L.

Canat, G.

Chodorow, M.

Coulombier, Q.

Debut, A.

A. Debut, S. Randoux, and J. Zemmouri, “Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.18(4), 556–567 (2001).
[CrossRef]

Delavaux, J.

Doisy, M.

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core chalcogenide fiber,” Proc. SPIE Photonics Europe 20128426, 73–83 (2012).

Dolfi, D.

Duhant, M.

El Amraoui, M.

Ezekiel, S.

Geng, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

Huignard, J.-P.

Jiang, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

Kruger, M.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” J. Quantum Electron.22(11), 2070–2074 (2002).
[CrossRef]

LaRochelle, S.

J. Poette, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fibre laser,” Electron. Lett.40(12), 724–726 (2004).
[CrossRef]

Léguillon, Y.

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett., 37(7), 1157–1159 (2012).
[CrossRef] [PubMed]

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core chalcogenide fiber,” Proc. SPIE Photonics Europe 20128426, 73–83 (2012).

Mandelberg, H.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” J. Quantum Electron.22(11), 2070–2074 (2002).
[CrossRef]

McGrath, P.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” J. Quantum Electron.22(11), 2070–2074 (2002).
[CrossRef]

Méchin, D.

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core chalcogenide fiber,” Proc. SPIE Photonics Europe 20128426, 73–83 (2012).

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett., 37(7), 1157–1159 (2012).
[CrossRef] [PubMed]

Molin, S.

Poette, J.

J. Poette, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fibre laser,” Electron. Lett.40(12), 724–726 (2004).
[CrossRef]

Randoux, S.

L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.19(5), 1055–1066 (2002).
[CrossRef]

A. Debut, S. Randoux, and J. Zemmouri, “Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.18(4), 556–567 (2001).
[CrossRef]

Renard, W.

Renversez, G.

Richter, L.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” J. Quantum Electron.22(11), 2070–2074 (2002).
[CrossRef]

Robert, P.

J. Boschung, L. Thevenaz, and P. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett.30(18), 1488–1489 (1994).
[CrossRef]

Shaw, H.

Simon, J.-C.

J. Poette, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fibre laser,” Electron. Lett.40(12), 724–726 (2004).
[CrossRef]

Slavik, R.

J. Poette, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fibre laser,” Electron. Lett.40(12), 724–726 (2004).
[CrossRef]

Smektala, F.

Smith, S. P.

Staines, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

Stepien, L.

L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.19(5), 1055–1066 (2002).
[CrossRef]

Stokes, L.

Thevenaz, L.

J. Boschung, L. Thevenaz, and P. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett.30(18), 1488–1489 (1994).
[CrossRef]

Toulouse, J.

Toupin, P.

Tow, K. H.

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett., 37(7), 1157–1159 (2012).
[CrossRef] [PubMed]

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core chalcogenide fiber,” Proc. SPIE Photonics Europe 20128426, 73–83 (2012).

Trégoat, D.

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core chalcogenide fiber,” Proc. SPIE Photonics Europe 20128426, 73–83 (2012).

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett., 37(7), 1157–1159 (2012).
[CrossRef] [PubMed]

Troles, J.

Trolès, J.

Wang, Z.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

Yeniay, A.

Zarinetchi, F.

Zemmouri, J.

L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.19(5), 1055–1066 (2002).
[CrossRef]

A. Debut, S. Randoux, and J. Zemmouri, “Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.18(4), 556–567 (2001).
[CrossRef]

Zong, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

Electron. Lett. (2)

J. Boschung, L. Thevenaz, and P. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett.30(18), 1488–1489 (1994).
[CrossRef]

J. Poette, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fibre laser,” Electron. Lett.40(12), 724–726 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B. (2)

A. Debut, S. Randoux, and J. Zemmouri, “Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.18(4), 556–567 (2001).
[CrossRef]

L. Stepien, S. Randoux, and J. Zemmouri, “Intensity noise in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B.19(5), 1055–1066 (2002).
[CrossRef]

J. Quantum Electron. (1)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” J. Quantum Electron.22(11), 2070–2074 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. Express (1)

Proc. SPIE Photonics Europe 2012 (1)

K. H. Tow, Y. Léguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Méchin, D. Trégoat, and M. Doisy, “Brillouin fiber laser using As38Se62 suspended-core chalcogenide fiber,” Proc. SPIE Photonics Europe 20128426, 73–83 (2012).

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Transverse section of the GeAsSe MOF used and (b) experimental setup of the BFL laser cavity. Abbreviations are as follows: EDFA (Erbium Doped Fiber Amplifier); HNA (High Numerical Aperture); PC (Polarisation Controller); Filter (Optical Filter); S1 and S2 (1st and 2nd order Brillouin lasing); CW (Clockwise); CCW (counterclockwise).

Fig. 2
Fig. 2

(a) Brillouin laser output measured with an optical spectrum analyzer for an injected power of around 70 mW and (b) S1 and S2 output power as a function of injected pump power.

Fig. 3
Fig. 3

(a) Linewidth measurement of the (i) pump source (ii) S1 and (iii) S2 component and (b) zoom on the central part.

Fig. 4
Fig. 4

RIN measurement (a) for an injected power of 12 mW for pump source and 60 mW for pump source and S2 component (b) the pump source and the S1 component operating (ii) below (12 mW) and (iii) above the second threshold (60 mW).

Metrics