Abstract

We report herein the enhancement in both power and efficiency performance of a continuous-wave intra-cavity singly resonant optical parametric oscillator (ICSRO) by introducing finite resonant wave output coupling. While coupling out the resonant wave to useful output, the output coupling increases the SRO threshold properly thus suppresses the back-conversion under high pump power. Therefore, the down-conversion efficiency is maintained under high pump without having to raise the threshold by defocusing. With a T = 9.6% signal wave output coupler used, the SRO threshold is 2.46 W and the down-conversion efficiency is 72.9% under the maximum pump power of 21.4 W. 1.43 W idler power at 3.66 μm and 5.03 W signal power at 1.5 μm are obtained, corresponding to a total extraction efficiency of 30.2%. The resonant wave out coupling significantly levels up the upper limit for the power range where the ICSRO exhibits high efficiency, without impeding its advantage of low threshold.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.-H. My, C. Drag, and F. Bretenaker, “Single-frequency and tunable operation of a continuous intracavity-frequency-doubled singly resonant optical parametric oscillator,” Opt. Lett.33(13), 1455–1457 (2008).
    [CrossRef] [PubMed]
  2. D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett.23(24), 1895–1897 (1998).
    [CrossRef] [PubMed]
  3. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett.21(17), 1336–1338 (1996).
    [CrossRef] [PubMed]
  4. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3.,” Opt. Lett.21(10), 713–715 (1996).
    [CrossRef] [PubMed]
  5. D. J. M. Stothard and M. H. Dunn, “Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators,” Opt. Express18(2), 1336–1348 (2010).
    [CrossRef] [PubMed]
  6. F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, singly resonant, intracavity parametric oscillator,” Opt. Lett.22(2), 75–77 (1997).
    [CrossRef] [PubMed]
  7. T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett.72(13), 1527–1529 (1998).
    [CrossRef]
  8. G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, “1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32(17), 2623–2625 (2007).
    [CrossRef] [PubMed]
  9. G. K. Samanta and M. Ebrahim-Zadeh, “Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling,” Opt. Express16(10), 6883–6888 (2008).
    [CrossRef] [PubMed]
  10. J. E. Bjorkholm, “Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators,” IEEE J. Quantum Electron.7(3), 109–118 (1971).
    [CrossRef]
  11. S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE57(12), 2096–2113 (1969).
    [CrossRef]
  12. Q. Sheng, X. Ding, C. Shi, S. Yin, B. Li, C. Shang, X. Yu, W. Wen, and J. Yao, “Continuous-wave mid-infrared intra-cavity singly resonant PPLN-OPO under 880 nm in-band pumping,” Opt. Express20(7), 8041–8046 (2012).
    [CrossRef] [PubMed]
  13. D. J. M. Stothard, J.-M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express17(13), 10648–10658 (2009).
    [CrossRef] [PubMed]
  14. S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
    [CrossRef]

2012 (1)

2011 (1)

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (2)

2007 (1)

1998 (2)

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett.72(13), 1527–1529 (1998).
[CrossRef]

D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, “Low-pump-threshold continuous-wave singly resonant optical parametric oscillator,” Opt. Lett.23(24), 1895–1897 (1998).
[CrossRef] [PubMed]

1997 (1)

1996 (2)

1971 (1)

J. E. Bjorkholm, “Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators,” IEEE J. Quantum Electron.7(3), 109–118 (1971).
[CrossRef]

1969 (1)

S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE57(12), 2096–2113 (1969).
[CrossRef]

Alexander, J. I.

Bjorkholm, J. E.

J. E. Bjorkholm, “Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators,” IEEE J. Quantum Electron.7(3), 109–118 (1971).
[CrossRef]

Bosenberg, W. R.

Bretenaker, F.

Burns, D.

Byer, R. L.

Colville, F. G.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett.72(13), 1527–1529 (1998).
[CrossRef]

F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, singly resonant, intracavity parametric oscillator,” Opt. Lett.22(2), 75–77 (1997).
[CrossRef] [PubMed]

Das, R.

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

Ding, X.

Drag, C.

Drobshoff, A.

Dunn, M. H.

Ebrahimzadeh, M.

Ebrahim-Zadeh, M.

Edwards, T. J.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett.72(13), 1527–1529 (1998).
[CrossRef]

Fayaz, G. R.

Harris, S. E.

S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE57(12), 2096–2113 (1969).
[CrossRef]

Hopkins, J.-M.

Kumar, S. C.

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

Li, B.

My, T.-H.

Myers, L. E.

Samanta, G. K.

Shang, C.

Sheng, Q.

Shi, C.

Stothard, D. J. M.

Turnbull, G. A.

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett.72(13), 1527–1529 (1998).
[CrossRef]

Wen, W.

Yao, J.

Yin, S.

Yu, X.

Appl. Phys. B (1)

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, and F. G. Colville, “High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator,” Appl. Phys. Lett.72(13), 1527–1529 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. E. Bjorkholm, “Some effects of spatially nonuniform pumping in pulsed optical parametric oscillators,” IEEE J. Quantum Electron.7(3), 109–118 (1971).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Proc. IEEE (1)

S. E. Harris, “Tunable optical parametric oscillators,” Proc. IEEE57(12), 2096–2113 (1969).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the experiment setup.

Fig. 2
Fig. 2

SRO idler output power versus absorbed LD pump power when the SRO cavity is optimized for lowest threshold (solid circles) and maximum idler power (squares).

Fig. 3
Fig. 3

SRO idler output power and down-converted power with different signal output coupler transmittances versus absorbed LD power (cavities optimized for lowest threshold).

Fig. 4
Fig. 4

Theoretical and measured SRO down-conversion efficiencies with different signal output coupler transmittances versus absorbed LD power (cavities optimized for lowest threshold)

Fig. 5
Fig. 5

SRO idler, signal and total output powers and corresponding extraction efficiencies with the two output couplers versus absorbed LD power

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P th SRO = P th L P in ,

Metrics