Abstract

We present new generation and detection methods for high symbol-rate 64-ary quadrature amplitude modulation (64QAM). The 64QAM signal is created by tandem in-phase/quadrature (I/Q) modulators driven by electrical binary signals. The first I/Q modulator, which has four drive arms (i.e. a dual-drive I/Q modulator), yields 16QAM with an offset at the 1st quadrant of the complex plane. Subsequently, the second modulator switches this 16QAM signal over four quadrants via the typical quadrature phase-shift-keying (QPSK) modulation scheme, hence the desired 64QAM is generated. To mitigate the impacts of transmitter imperfections, we also propose a phase-folded decision-directed (PF-DD) linear equalizer at the receiver. Using these new techniques, we experimentally demonstrate the 120- and 240-Gb/s polarization-division-multiplexed (PDM) return-to-zero (RZ) 64QAM systems. The required optical signal-to-noise ratio (OSNR) for a bit-error rate (BER) of 2.4x10−2 is measured at 20.2 or 23 dB, respectively, which is ~3.5 dB off the theoretical limit.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, P. J. Winzer, A. Konczykowska, F. Jorge, J.-Y. Dupuy, M. Riet, G. Charlet, B. Zhu, and D. W. Peckham, “Generation and transmission of 21.4-Gbaud PDM 64-QAM using a novel high-power DAC driving a single I/Q modulator,” J. Lightwave Technol.30(4), 532–536 (2012).
    [CrossRef]
  2. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
    [CrossRef]
  3. J. Yu, X. Zhou, Y.-K. Huang, S. Gupta, M.-F. Huang, T. Wang, and P. Magil, “112.8-Gb/s PM-RZ-64QAM optical signal generation and transmission on a 12.5GHz WDM grid,” in Proceedings of OFC2010, paper OThM1 (2010).
  4. W.-R. Peng, H. Takahashi, T. Tsuritani, and I. Morita, “DAC-free generation and 1200-km transmission of 41-GBd PDM-64QAM using single I/Q modulator,” in Proceedings of OECC2012, paper PDP1–3 (2012).
  5. W.-R. Peng, H. Y. Choi, H. Takahashi, I. Morita, and T. Tsuritani, “Generation and detection of 22.4-GBd 64QAM using coherent OTD mux and ETD demux approach,” in Proceedings of ECOC2012, paper Tu.4.A.3 (2012).
  6. A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” in Proceedings of ECOC2009, paper PD2.2 (2009).
  7. H. Y. Choi, T. Tsuritani, and I. Morita, “A novel transmitter for 320-Gb/s PDM-RZ-16QAM generation using electrical binary drive signals,” in Proceedings of ECOC2012, paper Tu.4.A.2 (2012).
  8. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.28(4), 547–556 (2010).
    [CrossRef]
  9. N. K. Jablon, “Carrier recovery for blind equalization,” in the International Conference on Acoustics, Speech, and Signal Processing, (1989), pp. 1211–1214.
  10. G. Picchi and G. Prati, “Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm,” IEEE Trans. Commun.35(9), 877–887 (1987).
    [CrossRef]
  11. H. Y. Choi, T. Tsuritani, and I. Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Opt. Express20(17), 18652–18658 (2012).
    [CrossRef] [PubMed]
  12. G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express18(22), 23062–23069 (2010).
    [CrossRef] [PubMed]
  13. X. Zhou and J. Yu, “200-Gb/s PDM-16QAM generation using a new synthesizing method,” in Proceedings of ECOC2009, paper 10.3.5 (2009).
  14. H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in Proceedings of COIN2012, paper TuF.2 (2012).
  15. J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2001).
  16. D. Chang, F. Yu, Z. Xiao, Y. Li, N. Stojanovic, C. Xie, X. Shi, X. Xu, and Q. Xiong, “FPGA verification of a single QC-LDPC code for 100 Gb/s optical systems without error floor down to BER of 10−15,” in Proceedings of OFC2011, paper OTuN2 (2011).

2012

2010

1987

G. Picchi and G. Prati, “Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm,” IEEE Trans. Commun.35(9), 877–887 (1987).
[CrossRef]

Andrekson, P. A.

Becker, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

Buhl, L. L.

Charlet, G.

Choi, H. Y.

Doerr, C. R.

Dreschmann, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

Dupuy, J.-Y.

Ellis, A.

Freude, W.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

Gnauck, A. H.

Hillerkuss, D.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

Huebner, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

Johannisson, P.

Jorge, F.

Konczykowska, A.

Koos, C.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

Leuthold, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

Lu, G.-W.

Magarini, M.

Meyer, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

Morita, I.

Nebendahl, B.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

Peckham, D. W.

Picchi, G.

G. Picchi and G. Prati, “Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm,” IEEE Trans. Commun.35(9), 877–887 (1987).
[CrossRef]

Prati, G.

G. Picchi and G. Prati, “Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm,” IEEE Trans. Commun.35(9), 877–887 (1987).
[CrossRef]

Riet, M.

Schmogrow, R.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

Sjödin, M.

Sköld, M.

Sunnerud, H.

Tsuritani, T.

Westlund, M.

Winter, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

Winzer, P. J.

Zhao, J.

Zhu, B.

IEEE Photon. Technol. Lett.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett.22(21), 1601–1603 (2010).
[CrossRef]

IEEE Trans. Commun.

G. Picchi and G. Prati, “Blind equalization and carrier recovery using a “stop-and-go” decision-directed algorithm,” IEEE Trans. Commun.35(9), 877–887 (1987).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

X. Zhou and J. Yu, “200-Gb/s PDM-16QAM generation using a new synthesizing method,” in Proceedings of ECOC2009, paper 10.3.5 (2009).

H. Y. Choi, T. Tsuritani, and I. Morita, “Effects of LN modulator chirp on performance of digital coherent optical transmission system,” in Proceedings of COIN2012, paper TuF.2 (2012).

J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2001).

D. Chang, F. Yu, Z. Xiao, Y. Li, N. Stojanovic, C. Xie, X. Shi, X. Xu, and Q. Xiong, “FPGA verification of a single QC-LDPC code for 100 Gb/s optical systems without error floor down to BER of 10−15,” in Proceedings of OFC2011, paper OTuN2 (2011).

J. Yu, X. Zhou, Y.-K. Huang, S. Gupta, M.-F. Huang, T. Wang, and P. Magil, “112.8-Gb/s PM-RZ-64QAM optical signal generation and transmission on a 12.5GHz WDM grid,” in Proceedings of OFC2010, paper OThM1 (2010).

W.-R. Peng, H. Takahashi, T. Tsuritani, and I. Morita, “DAC-free generation and 1200-km transmission of 41-GBd PDM-64QAM using single I/Q modulator,” in Proceedings of OECC2012, paper PDP1–3 (2012).

W.-R. Peng, H. Y. Choi, H. Takahashi, I. Morita, and T. Tsuritani, “Generation and detection of 22.4-GBd 64QAM using coherent OTD mux and ETD demux approach,” in Proceedings of ECOC2012, paper Tu.4.A.3 (2012).

A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, and H. Yamazaki, “240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver,” in Proceedings of ECOC2009, paper PD2.2 (2009).

H. Y. Choi, T. Tsuritani, and I. Morita, “A novel transmitter for 320-Gb/s PDM-RZ-16QAM generation using electrical binary drive signals,” in Proceedings of ECOC2012, paper Tu.4.A.2 (2012).

N. K. Jablon, “Carrier recovery for blind equalization,” in the International Conference on Acoustics, Speech, and Signal Processing, (1989), pp. 1211–1214.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configuration of the proposed transmitter.

Fig. 2
Fig. 2

Operation of the DD I/Q modulator.

Fig. 3
Fig. 3

Simulated constellations at each modulator output. The red circles indicate the modulated symbols.

Fig. 4
Fig. 4

(a) Offline processing after detection and (b) phase-folded decision-directed linear equalization.

Fig. 5
Fig. 5

Experimental setup of (a) transmitter and (b) receiver.

Fig. 6
Fig. 6

Equalized constellations and measured BER curves before and after the PF-DD equalizer of (a), (c) 10-Gbaud RZ-64QAM and (b), (d) 20-Gbaud RZ-64QAM signals for the single-polarization case.

Fig. 7
Fig. 7

Measured BER curves of 10-Gbaud (triangle) and 20-Gbaud (square) PDM-RZ-64QM signals and recovered constellations of 240-Gb/s PDM-RZ-64QAM. Each of the theoretical lines represents the 10- and 20-Gbaud 64QAM theoretical limits, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E o (t)= E in (t) 2 { H A (t)+exp( jπ v c V π ) H B (t) },
H A (t)= 1 2 { exp( jπ A 1 v 1 (t) V π )+exp( jπ A 2 v 2 (t)+jπ v a V π ) },
H B (t)= 1 2 { exp( jπ A 3 v 3 (t) V π )+exp( jπ A 4 v 4 (t)+jπ v b V π ) }
C n C n +μ ε k x kn *

Metrics