Abstract

This paper presents an optical fiber-field access device suitable for use in different in-line fiber-optics’ systems and fiber-based photonics’ components. The proposed device utilizes a thin silica micro-wire positioned in-between two lead-in single mode fibers. The thin micro-wire acts as a waveguide that allows for low-loss interconnection between both lead-in fibers, while providing interaction between the guided optical field and the surrounding medium or other photonic structures. The field interaction strength, total loss, and phase matching conditions can be partially controlled by device-design. The presented all-fiber device is miniature in size and utilizes an all-silica construction. It has mechanical properties suitable for handling and packaging without the need for additional mechanical support or reinforcements. The proposed device was produced using a micromachining method that utilizes selective etching of a purposely-produced phosphorus pentoxide-doped optical fiber. This method is simple, compatible with batch processes, and has good high-volume manufacturing potential.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011).
    [CrossRef] [PubMed]
  2. L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sensor. Actuat. Biol. Chem.113(1), 100–105 (2006).
  3. J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol.24(11), 4329–4336 (2006).
    [CrossRef]
  4. J. D. Gordon, T. L. Lowder, R. H. Selfridge, and S. M. Schultz, “Optical D-fiber-based volatile organic compound sensor,” Appl. Opt.46(32), 7805–7810 (2007).
    [CrossRef] [PubMed]
  5. H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Evanescent sensing of biomolecules and cells,” Sensor. Actuat. Biol. Chem.88(1), 67–74 (2003).
  6. Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron.11(1–2), 137–148 (1996).
    [CrossRef]
  7. K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett.18(21), 2239–2241 (2006).
    [CrossRef]
  8. J. Kvavle, S. Schultz, and R. Selfridge, “Ink-jetting AJL8/APC for D-fiber electric field sensors,” Appl. Opt.48(28), 5280–5286 (2009).
    [CrossRef] [PubMed]
  9. S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous Measurement of Refractive Index, Temperature, and Strain Using Etched-Core Fiber Bragg Grating Sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
    [CrossRef]
  10. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005).
    [CrossRef] [PubMed]
  11. M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B101(3), 313–320 (2010).
    [CrossRef] [PubMed]
  12. H. Choi, Y. Jeong, and K. Oh, “Wide, tunable band rejection filter based on micro-optical waveguide on microactuating platform covering O, E, S, C, L, and U bands,” Opt. Lett.36(4), 484–486 (2011).
    [CrossRef] [PubMed]
  13. C. A. Millar, M. C. Brierley, and S. R. Mallinson, “Exposed-core single-mode-fiber channel-dropping filter using a high-index overlay waveguide,” Opt. Lett.12(4), 284–286 (1987).
    [CrossRef] [PubMed]
  14. K. R. Sohn and J. W. Song, “Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO3 overlay and intermediate coupling layer,” Opt. Commun.203(3–6), 271–276 (2002).
    [CrossRef]
  15. M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. Mckee, “D-fibre filter for erbium gain spectrum flattening,” Electron. Lett.28(2), 131–132 (1992).
    [CrossRef]
  16. C. L. Lee, Z. Y. Weng, C. J. Lin, and Y. Y. Lin, “Leakage coupling of ultrasensitive periodical silica thin-film long-period grating coated on tapered fiber,” Opt. Lett.35(24), 4172–4174 (2010).
    [CrossRef] [PubMed]
  17. K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing applications,” Appl. Opt.45(8), 1669–1675 (2006).
    [CrossRef] [PubMed]
  18. V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express17(22), 19988–19995 (2009).
    [CrossRef] [PubMed]
  19. S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys.99(9), 093516 (2006).
    [CrossRef]
  20. X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay,” IEEE Photon. Technol. Lett.22(18), 1352–1354 (2010).
    [CrossRef]
  21. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett.25(4), 260–262 (2000).
    [CrossRef] [PubMed]
  22. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol.16(8), 1433–1446 (1998).
    [CrossRef]
  23. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, “Morphology-dependent resonances of a microsphere-optical fiber system,” Opt. Lett.21(10), 695–697 (1996).
    [CrossRef] [PubMed]
  24. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
    [CrossRef]
  25. A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett.20(7), 654–656 (1995).
    [CrossRef] [PubMed]
  26. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett.32(2), 148–150 (2007).
    [CrossRef] [PubMed]
  27. Y. J. Zhang, F. F. Zhong, W. B. He, Y. Zhang, Y. Wang, J. Xu, and J. L. Ju, “A long uniform taper applied to an all-fiber Tm3+ doped double-clad fiber laser,” Laser Phys.20(11), 1978–1980 (2010).
    [CrossRef]
  28. A. Diez, M. V. Andres, and D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: Resonant excitation of hybrid plasma modes,” IEEE Photon. Technol. Lett.10(6), 833–835 (1998).
    [CrossRef]
  29. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Fabrication of a side-polished fiber polarizer with a biref ringent polymer overlay,” Opt. Lett.22(9), 606–608 (1997).
    [CrossRef] [PubMed]
  30. M. Davanço and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express17(13), 10542–10563 (2009).
    [CrossRef] [PubMed]
  31. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express19(3), 1786–1793 (2011).
    [CrossRef] [PubMed]
  32. L. Su, T. H. Lee, and S. R. Elliott, “Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper,” Opt. Lett.34(17), 2685–2687 (2009).
    [CrossRef] [PubMed]
  33. M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol.12(9), 1524–1531 (1994).
    [CrossRef]
  34. J. M. Kvavle, S. M. Schultz, and R. H. Selfridge, “Low loss elliptical core D-fiber to PANDA fiber fusion splicing,” Opt. Express16(18), 13552–13559 (2008).
    [CrossRef] [PubMed]
  35. T. L. Lowder, B. R. Tebbs, R. H. Selfridge, S. M. Schultz, K. H. Smith, and T. D. Monte, “Polarization analysis of surface-relief D-fiber Bragg gratings,” Appl. Opt.46(13), 2387–2393 (2007).
    [CrossRef] [PubMed]
  36. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure,” J. Lightwave Technol.6(10), 1476–1482 (1988).
    [CrossRef]
  37. Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photon. Technol. Lett.4(5), 465–467 (1992).
    [CrossRef]
  38. D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol.24(9), 3532–3539 (2006).
    [CrossRef]
  39. H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mat. Sci. Eng. B-Solid97(1), 87–93 (2003).
    [CrossRef]
  40. J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett.11(11), 1429–1430 (1999).
    [CrossRef]
  41. E. J. Zhang, W. D. Sacher, and J. K. S. Poon, “Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,” Opt. Express18(21), 22593–22598 (2010).
    [CrossRef] [PubMed]
  42. J. D. Love, W. M. Henry, and W. J. Stewart, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEEE Proc.-J138(5), 343–354 (1991).
  43. L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett.34(18), 2724–2726 (2009).
    [CrossRef] [PubMed]
  44. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon.1(1), 107–161 (2009).
    [CrossRef]
  45. S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photon. J3(4), 627–632 (2011).
    [CrossRef]
  46. D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett.36(16), 3148–3150 (2011).
    [CrossRef] [PubMed]

2011 (5)

R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011).
[CrossRef] [PubMed]

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photon. J3(4), 627–632 (2011).
[CrossRef]

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express19(3), 1786–1793 (2011).
[CrossRef] [PubMed]

H. Choi, Y. Jeong, and K. Oh, “Wide, tunable band rejection filter based on micro-optical waveguide on microactuating platform covering O, E, S, C, L, and U bands,” Opt. Lett.36(4), 484–486 (2011).
[CrossRef] [PubMed]

D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett.36(16), 3148–3150 (2011).
[CrossRef] [PubMed]

2010 (6)

E. J. Zhang, W. D. Sacher, and J. K. S. Poon, “Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,” Opt. Express18(21), 22593–22598 (2010).
[CrossRef] [PubMed]

C. L. Lee, Z. Y. Weng, C. J. Lin, and Y. Y. Lin, “Leakage coupling of ultrasensitive periodical silica thin-film long-period grating coated on tapered fiber,” Opt. Lett.35(24), 4172–4174 (2010).
[CrossRef] [PubMed]

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous Measurement of Refractive Index, Temperature, and Strain Using Etched-Core Fiber Bragg Grating Sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B101(3), 313–320 (2010).
[CrossRef] [PubMed]

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay,” IEEE Photon. Technol. Lett.22(18), 1352–1354 (2010).
[CrossRef]

Y. J. Zhang, F. F. Zhong, W. B. He, Y. Zhang, Y. Wang, J. Xu, and J. L. Ju, “A long uniform taper applied to an all-fiber Tm3+ doped double-clad fiber laser,” Laser Phys.20(11), 1978–1980 (2010).
[CrossRef]

2009 (6)

2008 (1)

2007 (3)

2006 (7)

K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing applications,” Appl. Opt.45(8), 1669–1675 (2006).
[CrossRef] [PubMed]

D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol.24(9), 3532–3539 (2006).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol.24(11), 4329–4336 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett.18(21), 2239–2241 (2006).
[CrossRef]

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys.99(9), 093516 (2006).
[CrossRef]

L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sensor. Actuat. Biol. Chem.113(1), 100–105 (2006).

2005 (1)

2003 (2)

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mat. Sci. Eng. B-Solid97(1), 87–93 (2003).
[CrossRef]

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Evanescent sensing of biomolecules and cells,” Sensor. Actuat. Biol. Chem.88(1), 67–74 (2003).

2002 (1)

K. R. Sohn and J. W. Song, “Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO3 overlay and intermediate coupling layer,” Opt. Commun.203(3–6), 271–276 (2002).
[CrossRef]

2000 (1)

1999 (1)

J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett.11(11), 1429–1430 (1999).
[CrossRef]

1998 (2)

M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol.16(8), 1433–1446 (1998).
[CrossRef]

A. Diez, M. V. Andres, and D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: Resonant excitation of hybrid plasma modes,” IEEE Photon. Technol. Lett.10(6), 833–835 (1998).
[CrossRef]

1997 (1)

1996 (2)

G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, “Morphology-dependent resonances of a microsphere-optical fiber system,” Opt. Lett.21(10), 695–697 (1996).
[CrossRef] [PubMed]

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron.11(1–2), 137–148 (1996).
[CrossRef]

1995 (1)

1994 (1)

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol.12(9), 1524–1531 (1994).
[CrossRef]

1992 (2)

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. Mckee, “D-fibre filter for erbium gain spectrum flattening,” Electron. Lett.28(2), 131–132 (1992).
[CrossRef]

Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photon. Technol. Lett.4(5), 465–467 (1992).
[CrossRef]

1991 (1)

J. D. Love, W. M. Henry, and W. J. Stewart, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEEE Proc.-J138(5), 343–354 (1991).

1988 (1)

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure,” J. Lightwave Technol.6(10), 1476–1482 (1988).
[CrossRef]

1987 (1)

Andres, M. V.

A. Diez, M. V. Andres, and D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: Resonant excitation of hybrid plasma modes,” IEEE Photon. Technol. Lett.10(6), 833–835 (1998).
[CrossRef]

Arnold, S.

Arregui, F. J.

Azar, M. K.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B101(3), 313–320 (2010).
[CrossRef] [PubMed]

Barry, T. S.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol.12(9), 1524–1531 (1994).
[CrossRef]

Bebbington, A.

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. Mckee, “D-fibre filter for erbium gain spectrum flattening,” Electron. Lett.28(2), 131–132 (1992).
[CrossRef]

Bharadwaj, R.

R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011).
[CrossRef] [PubMed]

Bilodeau, F.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure,” J. Lightwave Technol.6(10), 1476–1482 (1988).
[CrossRef]

Birks, T. A.

Bose, R.

Brambilla, G.

Brierley, M. C.

Cai, M.

Cassidy, S. A.

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. Mckee, “D-fibre filter for erbium gain spectrum flattening,” Electron. Lett.28(2), 131–132 (1992).
[CrossRef]

Chau, L. K.

L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sensor. Actuat. Biol. Chem.113(1), 100–105 (2006).

Chen, L.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys.99(9), 093516 (2006).
[CrossRef]

Chen, X.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys.99(9), 093516 (2006).
[CrossRef]

Chen, Y.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys.99(9), 093516 (2006).
[CrossRef]

Chen, Z.

Cheng, S. F.

L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sensor. Actuat. Biol. Chem.113(1), 100–105 (2006).

Cheng, X.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay,” IEEE Photon. Technol. Lett.22(18), 1352–1354 (2010).
[CrossRef]

Chin, M. K.

Choi, H.

Cibula, E.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photon. J3(4), 627–632 (2011).
[CrossRef]

Connolly, J.

Cordaro, M. H.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol.12(9), 1524–1531 (1994).
[CrossRef]

Corres, J. M.

Culverhouse, D. O.

A. Diez, M. V. Andres, and D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: Resonant excitation of hybrid plasma modes,” IEEE Photon. Technol. Lett.10(6), 833–835 (1998).
[CrossRef]

Davanço, M.

Dhawangale, A.

R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011).
[CrossRef] [PubMed]

Diez, A.

A. Diez, M. V. Andres, and D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: Resonant excitation of hybrid plasma modes,” IEEE Photon. Technol. Lett.10(6), 833–835 (1998).
[CrossRef]

Donlagic, D.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photon. J3(4), 627–632 (2011).
[CrossRef]

D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett.36(16), 3148–3150 (2011).
[CrossRef] [PubMed]

D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol.24(9), 3532–3539 (2006).
[CrossRef]

Elliott, S. R.

England, R.

Faucher, S.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure,” J. Lightwave Technol.6(10), 1476–1482 (1988).
[CrossRef]

Feng, X.

Ghezelaiagh, M. H.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B101(3), 313–320 (2010).
[CrossRef] [PubMed]

Goh, C. S.

Gordon, J. D.

Griffel, G.

Grogan, M. D. W.

Haddock, H. S.

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mat. Sci. Eng. B-Solid97(1), 87–93 (2003).
[CrossRef]

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Evanescent sensing of biomolecules and cells,” Sensor. Actuat. Biol. Chem.88(1), 67–74 (2003).

Hale, Z. M.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron.11(1–2), 137–148 (1996).
[CrossRef]

Haus, H. A.

J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett.11(11), 1429–1430 (1999).
[CrossRef]

Hawkins, A. R.

He, W. B.

Y. J. Zhang, F. F. Zhong, W. B. He, Y. Zhang, Y. Wang, J. Xu, and J. L. Ju, “A long uniform taper applied to an all-fiber Tm3+ doped double-clad fiber laser,” Laser Phys.20(11), 1978–1980 (2010).
[CrossRef]

Henry, W. M.

J. D. Love, W. M. Henry, and W. J. Stewart, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEEE Proc.-J138(5), 343–354 (1991).

Hill, K. O.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure,” J. Lightwave Technol.6(10), 1476–1482 (1988).
[CrossRef]

Ho, S. T.

Horak, P.

Hosseini, S. M.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B101(3), 313–320 (2010).
[CrossRef] [PubMed]

Hsiao, V. K. S.

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

Ipson, B. L.

Jeong, M. Y.

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous Measurement of Refractive Index, Temperature, and Strain Using Etched-Core Fiber Bragg Grating Sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

Jeong, Y.

Johnson, D. C.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure,” J. Lightwave Technol.6(10), 1476–1482 (1988).
[CrossRef]

Ju, J. L.

Y. J. Zhang, F. F. Zhong, W. B. He, Y. Zhang, Y. Wang, J. Xu, and J. L. Ju, “A long uniform taper applied to an all-fiber Tm3+ doped double-clad fiber laser,” Laser Phys.20(11), 1978–1980 (2010).
[CrossRef]

Jung, Y.

Kazemi, A.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B101(3), 313–320 (2010).
[CrossRef] [PubMed]

Kieu, K. Q.

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett.18(21), 2239–2241 (2006).
[CrossRef]

Koizumi, F.

Koukharenko, E.

Krchnavek, R. R.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol.12(9), 1524–1531 (1994).
[CrossRef]

Kundu, T.

R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011).
[CrossRef] [PubMed]

Kvavle, J.

Kvavle, J. M.

Laine, J. P.

J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett.11(11), 1429–1430 (1999).
[CrossRef]

Latifi, H.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B101(3), 313–320 (2010).
[CrossRef] [PubMed]

Lee, C. L.

Lee, S. G.

Lee, S. M.

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous Measurement of Refractive Index, Temperature, and Strain Using Etched-Core Fiber Bragg Grating Sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

Lee, T. H.

Lenardic, B.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photon. J3(4), 627–632 (2011).
[CrossRef]

Leon-Saval, S. G.

Levine, M. M.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron.11(1–2), 137–148 (1996).
[CrossRef]

Li, Z.

Liao, W.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys.99(9), 093516 (2006).
[CrossRef]

Lin, C. J.

Lin, T. J.

L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sensor. Actuat. Biol. Chem.113(1), 100–105 (2006).

Lin, Y. F.

L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sensor. Actuat. Biol. Chem.113(1), 100–105 (2006).

Lin, Y. Y.

Little, B. E.

J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett.11(11), 1429–1430 (1999).
[CrossRef]

Love, J. D.

J. D. Love, W. M. Henry, and W. J. Stewart, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEEE Proc.-J138(5), 343–354 (1991).

Lowder, T. L.

Lowe, C. R.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron.11(1–2), 137–148 (1996).
[CrossRef]

Luo, Y.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay,” IEEE Photon. Technol. Lett.22(18), 1352–1354 (2010).
[CrossRef]

Mallinson, S. R.

Mansuripur, M.

Marks, R. S.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron.11(1–2), 137–148 (1996).
[CrossRef]

Matias, I. R.

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

McGinnis, B. P.

Mckee, P.

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. Mckee, “D-fibre filter for erbium gain spectrum flattening,” Electron. Lett.28(2), 131–132 (1992).
[CrossRef]

Millar, C. A.

Monte, T. D.

Morris, N.

Mukherji, S.

R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011).
[CrossRef] [PubMed]

Murugan, G. S.

Mutharasan, R.

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Evanescent sensing of biomolecules and cells,” Sensor. Actuat. Biol. Chem.88(1), 67–74 (2003).

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mat. Sci. Eng. B-Solid97(1), 87–93 (2003).
[CrossRef]

Noda, J.

Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photon. Technol. Lett.4(5), 465–467 (1992).
[CrossRef]

Oh, K.

Payne, F. P.

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron.11(1–2), 137–148 (1996).
[CrossRef]

Peng, P. C.

Pevec, S.

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photon. J3(4), 627–632 (2011).
[CrossRef]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Poon, J. K. S.

Pu, S.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys.99(9), 093516 (2006).
[CrossRef]

Rakher, M. T.

Richardson, D. J.

Rode, D. L.

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol.12(9), 1524–1531 (1994).
[CrossRef]

Sacher, W. D.

Sai, V. V. R.

R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011).
[CrossRef] [PubMed]

Saini, S. S.

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous Measurement of Refractive Index, Temperature, and Strain Using Etched-Core Fiber Bragg Grating Sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

Sasabe, H.

Schultz, S.

Schultz, S. M.

Selfridge, R.

Selfridge, R. H.

Serpengüzel, A.

Sessions, N. P.

Set, S. Y.

Shankar, P. M.

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mat. Sci. Eng. B-Solid97(1), 87–93 (2003).
[CrossRef]

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Evanescent sensing of biomolecules and cells,” Sensor. Actuat. Biol. Chem.88(1), 67–74 (2003).

Smith, K. H.

Sohn, K. R.

K. R. Sohn and J. W. Song, “Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO3 overlay and intermediate coupling layer,” Opt. Commun.203(3–6), 271–276 (2002).
[CrossRef]

Sokoloff, J. P.

Song, J. W.

K. R. Sohn and J. W. Song, “Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO3 overlay and intermediate coupling layer,” Opt. Commun.203(3–6), 271–276 (2002).
[CrossRef]

Song, Y. W.

Srinivasan, K.

Stewart, W. J.

J. D. Love, W. M. Henry, and W. J. Stewart, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEEE Proc.-J138(5), 343–354 (1991).

Su, L.

Takeuchi, Y.

Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photon. Technol. Lett.4(5), 465–467 (1992).
[CrossRef]

Tang, J.

Taskent, D.

Tebbs, B. R.

Thakare, K.

R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011).
[CrossRef] [PubMed]

Tian, X.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay,” IEEE Photon. Technol. Lett.22(18), 1352–1354 (2010).
[CrossRef]

Titus, S.

R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011).
[CrossRef] [PubMed]

Vahala, K.

Verma, P. K.

R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wang, Y.

Y. J. Zhang, F. F. Zhong, W. B. He, Y. Zhang, Y. Wang, J. Xu, and J. L. Ju, “A long uniform taper applied to an all-fiber Tm3+ doped double-clad fiber laser,” Laser Phys.20(11), 1978–1980 (2010).
[CrossRef]

Weng, Z. Y.

Wilkinson, J. S.

Wilkinson, M.

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. Mckee, “D-fibre filter for erbium gain spectrum flattening,” Electron. Lett.28(2), 131–132 (1992).
[CrossRef]

Williams, R.

Wong, C. W.

Wu, W.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay,” IEEE Photon. Technol. Lett.22(18), 1352–1354 (2010).
[CrossRef]

Xia, Y.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys.99(9), 093516 (2006).
[CrossRef]

Xiao, L. M.

Xu, F.

Xu, J.

Y. J. Zhang, F. F. Zhong, W. B. He, Y. Zhang, Y. Wang, J. Xu, and J. L. Ju, “A long uniform taper applied to an all-fiber Tm3+ doped double-clad fiber laser,” Laser Phys.20(11), 1978–1980 (2010).
[CrossRef]

Xu, Y.

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys.99(9), 093516 (2006).
[CrossRef]

Yamashita, S.

Zhang, E. J.

Zhang, Q.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay,” IEEE Photon. Technol. Lett.22(18), 1352–1354 (2010).
[CrossRef]

Zhang, Y.

Y. J. Zhang, F. F. Zhong, W. B. He, Y. Zhang, Y. Wang, J. Xu, and J. L. Ju, “A long uniform taper applied to an all-fiber Tm3+ doped double-clad fiber laser,” Laser Phys.20(11), 1978–1980 (2010).
[CrossRef]

Zhang, Y. J.

Y. J. Zhang, F. F. Zhong, W. B. He, Y. Zhang, Y. Wang, J. Xu, and J. L. Ju, “A long uniform taper applied to an all-fiber Tm3+ doped double-clad fiber laser,” Laser Phys.20(11), 1978–1980 (2010).
[CrossRef]

Zhong, F. F.

Y. J. Zhang, F. F. Zhong, W. B. He, Y. Zhang, Y. Wang, J. Xu, and J. L. Ju, “A long uniform taper applied to an all-fiber Tm3+ doped double-clad fiber laser,” Laser Phys.20(11), 1978–1980 (2010).
[CrossRef]

Zhu, B.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay,” IEEE Photon. Technol. Lett.22(18), 1352–1354 (2010).
[CrossRef]

Zibaii, M. I.

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B101(3), 313–320 (2010).
[CrossRef] [PubMed]

Zou, G.

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay,” IEEE Photon. Technol. Lett.22(18), 1352–1354 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (4)

Biosens. Bioelectron. (2)

Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, “The single mode tapered optical fibre loop immunosensor,” Biosens. Bioelectron.11(1–2), 137–148 (1996).
[CrossRef]

R. Bharadwaj, V. V. R. Sai, K. Thakare, A. Dhawangale, T. Kundu, S. Titus, P. K. Verma, and S. Mukherji, “Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength,” Biosens. Bioelectron.26(7), 3367–3370 (2011).
[CrossRef] [PubMed]

Electron. Lett. (1)

M. Wilkinson, A. Bebbington, S. A. Cassidy, and P. Mckee, “D-fibre filter for erbium gain spectrum flattening,” Electron. Lett.28(2), 131–132 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - Part I: Basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

IEEE Photon. J (1)

S. Pevec, E. Cibula, B. Lenardic, and D. Donlagic, “Micromachining of Optical Fibers Using Selective Etching Based on Phosphorus Pentoxide Doping,” IEEE Photon. J3(4), 627–632 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

A. Diez, M. V. Andres, and D. O. Culverhouse, “In-line polarizers and filters made of metal-coated tapered fibers: Resonant excitation of hybrid plasma modes,” IEEE Photon. Technol. Lett.10(6), 833–835 (1998).
[CrossRef]

Y. Takeuchi and J. Noda, “Novel fiber coupler tapering process using a microheater,” IEEE Photon. Technol. Lett.4(5), 465–467 (1992).
[CrossRef]

J. P. Laine, B. E. Little, and H. A. Haus, “Etch-eroded fiber coupler for whispering-gallery-mode excitation in high-Q silica microspheres,” IEEE Photon. Technol. Lett.11(11), 1429–1430 (1999).
[CrossRef]

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett.18(21), 2239–2241 (2006).
[CrossRef]

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous Measurement of Refractive Index, Temperature, and Strain Using Etched-Core Fiber Bragg Grating Sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

X. Tian, X. Cheng, W. Wu, Y. Luo, Q. Zhang, B. Zhu, and G. Zou, “Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay,” IEEE Photon. Technol. Lett.22(18), 1352–1354 (2010).
[CrossRef]

IEEE Proc.-J (1)

J. D. Love, W. M. Henry, and W. J. Stewart, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEEE Proc.-J138(5), 343–354 (1991).

J. Appl. Phys. (1)

S. Pu, X. Chen, Y. Chen, Y. Xu, W. Liao, L. Chen, and Y. Xia, “Fiber-optic evanescent field modulator using a magnetic fluid as the cladding,” J. Appl. Phys.99(9), 093516 (2006).
[CrossRef]

J. Lightwave Technol. (5)

M. H. Cordaro, D. L. Rode, T. S. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” J. Lightwave Technol.12(9), 1524–1531 (1994).
[CrossRef]

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure,” J. Lightwave Technol.6(10), 1476–1482 (1988).
[CrossRef]

D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol.24(9), 3532–3539 (2006).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol.24(11), 4329–4336 (2006).
[CrossRef]

M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol.16(8), 1433–1446 (1998).
[CrossRef]

J. Photochem. Photobiol. B (1)

M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, “Measuring bacterial growth by refractive index tapered fiber optic biosensor,” J. Photochem. Photobiol. B101(3), 313–320 (2010).
[CrossRef] [PubMed]

Laser Phys. (1)

Y. J. Zhang, F. F. Zhong, W. B. He, Y. Zhang, Y. Wang, J. Xu, and J. L. Ju, “A long uniform taper applied to an all-fiber Tm3+ doped double-clad fiber laser,” Laser Phys.20(11), 1978–1980 (2010).
[CrossRef]

Mat. Sci. Eng. B-Solid (1)

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Fabrication of biconical tapered optical fibers using hydrofluoric acid,” Mat. Sci. Eng. B-Solid97(1), 87–93 (2003).
[CrossRef]

Opt. Commun. (1)

K. R. Sohn and J. W. Song, “Tunable in-line fiber optic comb filter using a side-polished single-mode fiber coupler with LiNbO3 overlay and intermediate coupling layer,” Opt. Commun.203(3–6), 271–276 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lett. (12)

C. L. Lee, Z. Y. Weng, C. J. Lin, and Y. Y. Lin, “Leakage coupling of ultrasensitive periodical silica thin-film long-period grating coated on tapered fiber,” Opt. Lett.35(24), 4172–4174 (2010).
[CrossRef] [PubMed]

H. Choi, Y. Jeong, and K. Oh, “Wide, tunable band rejection filter based on micro-optical waveguide on microactuating platform covering O, E, S, C, L, and U bands,” Opt. Lett.36(4), 484–486 (2011).
[CrossRef] [PubMed]

D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett.36(16), 3148–3150 (2011).
[CrossRef] [PubMed]

L. Su, T. H. Lee, and S. R. Elliott, “Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper,” Opt. Lett.34(17), 2685–2687 (2009).
[CrossRef] [PubMed]

L. M. Xiao, M. D. W. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, and T. A. Birks, “Tapered fibers embedded in silica aerogel,” Opt. Lett.34(18), 2724–2726 (2009).
[CrossRef] [PubMed]

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30(11), 1273–1275 (2005).
[CrossRef] [PubMed]

Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett.32(2), 148–150 (2007).
[CrossRef] [PubMed]

M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett.25(4), 260–262 (2000).
[CrossRef] [PubMed]

C. A. Millar, M. C. Brierley, and S. R. Mallinson, “Exposed-core single-mode-fiber channel-dropping filter using a high-index overlay waveguide,” Opt. Lett.12(4), 284–286 (1987).
[CrossRef] [PubMed]

A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett.20(7), 654–656 (1995).
[CrossRef] [PubMed]

S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Fabrication of a side-polished fiber polarizer with a biref ringent polymer overlay,” Opt. Lett.22(9), 606–608 (1997).
[CrossRef] [PubMed]

G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, “Morphology-dependent resonances of a microsphere-optical fiber system,” Opt. Lett.21(10), 695–697 (1996).
[CrossRef] [PubMed]

Sensor. Actuat. Biol. Chem. (2)

L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sensor. Actuat. Biol. Chem.113(1), 100–105 (2006).

H. S. Haddock, P. M. Shankar, and R. Mutharasan, “Evanescent sensing of biomolecules and cells,” Sensor. Actuat. Biol. Chem.88(1), 67–74 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

A scanning electron microscope (SEM) image of 400 µm long FFAD device

Fig. 2
Fig. 2

Modeled FFAD loss - the field access micro-wire composed of pure silica cladding and standard single-mode fiber core (e.g. 8.5 μm diameter core and 0.36% index difference)

Fig. 3
Fig. 3

Modeled FFAD loss - the field access micro-wire is a monolithic rod made of pure silica

Fig. 4
Fig. 4

Optical microscope cross-sectional views and refractive index profile data (obtained by a preform analyzer – cross-section) of fibers used for the manufacturing of experimental FFAD devices: (a) with GeO2 core, (b) with a pure silica rod

Fig. 5
Fig. 5

FFAD production process: (a) fusion-splicing, (b) cleaving to determine the active length of FFAD, (c) fusion-splicing, (d) etching

Fig. 6
Fig. 6

System for feedback assisted termination of etching process

Fig. 7
Fig. 7

Transmission changes during the manufacturing (etching) of typical FFAD devices: (a) FFAD with SMF compatible GeO2 core-cladding micro-wire design, (b) FFAD with pure SiO2 rod micro-wire design.

Fig. 8
Fig. 8

SEM micrographs of 1.8 mm and 0.018 mm-long FADD devices

Fig. 9
Fig. 9

Experimentally-measured FFAD losses as a function of cladding thickens and surrounding medium refractive index. The devices utilized standard SMF compatible core-cladding micro-wire design.

Fig. 10
Fig. 10

Typical response of the FFAD when immersed in index-matching fluid and when the temperature of the fluid is varied

Fig. 11
Fig. 11

Response of FFADs with different active lengths, when immersed in index-matching fluid and when the refractive index (temperature) of the fluid is varied: a) experimentally measured response; b) BMP numerical modeling (optical filed evolution is shown on the left side for 310 µm long device at three different surrounding refractive index values)

Fig. 12
Fig. 12

Refractive index profile of an up-doped SFF

Fig. 13
Fig. 13

Responses of three different FFADs to the refractive index change

Metrics