Abstract

Intracavity coupled Raman conversions in KTP and KTA driven by a laser diode (LD) pumped Nd:YAG/Cr4+:YAG 1064 nm laser is demonstrated in this paper. Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095 nm are achieved by balancing the Raman gain of KTP and KTA. Under the LD pump power of 8.1 W, the maximum average output powers at 1091 and 1095 nm are 170 and 150 mW, respectively. The corresponding pulse width and repetition rate are measured to be 3.3 ns and 11.2 kHz, with the pulse peak powers calculated to be 4.6 and 4.1 kW, respectively. The laser source with such small wavelength separation and orthogonal polarization provides the interest for terahertz generation in the 1 THz range. Our study provides a simple and flexible method to achieve orthogonally polarized dual-wavelength laser source by Raman-based intracavity coupled nonlinear frequency conversions.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl.23(3), 121–126 (2008).
    [CrossRef]
  2. D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt.50(19), 3360–3368 (2011).
    [CrossRef] [PubMed]
  3. U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett.16(5), 1277–1279 (2004).
    [CrossRef]
  4. L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun.273(1), 226–230 (2007).
    [CrossRef]
  5. S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol.21(5), 054016 (2010).
    [CrossRef]
  6. Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B70(4), 475–478 (2000).
    [CrossRef]
  7. K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B86(1), 65–70 (2006).
    [CrossRef]
  8. H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express18(4), 3352–3357 (2010).
    [CrossRef] [PubMed]
  9. K. Zhong, J. Q. Yao, C. L. Sun, C. G. Zhang, Y. Y. Miao, R. Wang, D. G. Xu, F. Zhang, Q. Zhang, D. Sun, and S. T. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011).
    [CrossRef] [PubMed]
  10. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express17(8), 6004–6009 (2009).
    [CrossRef] [PubMed]
  11. Y. Xing-Peng, L. Qiang, C. Hai-Long, F. Xing, G. Ma-Li, and W. Dong-Sheng, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B19(8), 084202 (2010).
    [CrossRef]
  12. W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B102(4), 775–779 (2011).
    [CrossRef]
  13. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express20(5), 5644–5651 (2012).
    [CrossRef] [PubMed]
  14. H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci.4(3), 241–253 (2003).
    [CrossRef] [PubMed]
  15. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
    [CrossRef]
  16. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express16(11), 8286–8291 (2008).
    [CrossRef] [PubMed]
  17. T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett.36(16), 1414–1416 (2000).
    [CrossRef]
  18. V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” Appl. Phys. Lett.82(3), 325–327 (2003).
    [CrossRef]
  19. Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4.,” Opt. Express16(21), 17092–17097 (2008).
    [CrossRef] [PubMed]
  20. H. T. Huang, J. L. He, S. D. Liu, J. F. Yang, B. T. Zhang, and F. Q. Liu, “Efficient generation of 1096nm and 1572nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal,” Appl. Phys. B103(1), 129–135 (2011).
    [CrossRef]
  21. H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011).
    [CrossRef]
  22. Y. F. Chen, “Stimulated Raman scattering in a potassium titanyl phosphate crystal: simultaneous self-sum frequency mixing and self-frequency doubling,” Opt. Lett.30(4), 400–402 (2005).
    [CrossRef] [PubMed]
  23. V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006).
    [CrossRef]
  24. H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B102(4), 873–878 (2011).
    [CrossRef]
  25. Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B94(4), 585–588 (2009).
    [CrossRef]
  26. Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, Z. H. Cong, W. J. Sun, G. F. Jin, X. T. Tao, Y. X. Sun, and S. J. Zhang, “A diode side-pumped KTiOAsO4 Raman laser,” Opt. Express17(9), 6968–6974 (2009).
    [CrossRef] [PubMed]
  27. A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
    [CrossRef]
  28. S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun.260(2), 680–686 (2006).
    [CrossRef]
  29. W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
    [CrossRef]
  30. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  31. F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
    [CrossRef]
  32. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Ding, and Ioulia B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett.98(13), 131106 (2011).
    [CrossRef]
  33. J. H. Liu, B. Ozygus, S. H. Yang, J. Erhard, U. Seelig, A. Ding, H. Weber, X. L. Meng, L. Zhu, L. J. Qin, C. L. Du, X. G. Xu, and Z. S. Shao, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. B20(4), 652–661 (2003).
    [CrossRef]

2012 (1)

2011 (7)

K. Zhong, J. Q. Yao, C. L. Sun, C. G. Zhang, Y. Y. Miao, R. Wang, D. G. Xu, F. Zhang, Q. Zhang, D. Sun, and S. T. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011).
[CrossRef] [PubMed]

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B102(4), 775–779 (2011).
[CrossRef]

D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt.50(19), 3360–3368 (2011).
[CrossRef] [PubMed]

H. T. Huang, J. L. He, S. D. Liu, J. F. Yang, B. T. Zhang, and F. Q. Liu, “Efficient generation of 1096nm and 1572nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal,” Appl. Phys. B103(1), 129–135 (2011).
[CrossRef]

H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011).
[CrossRef]

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B102(4), 873–878 (2011).
[CrossRef]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Ding, and Ioulia B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett.98(13), 131106 (2011).
[CrossRef]

2010 (3)

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol.21(5), 054016 (2010).
[CrossRef]

H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express18(4), 3352–3357 (2010).
[CrossRef] [PubMed]

Y. Xing-Peng, L. Qiang, C. Hai-Long, F. Xing, G. Ma-Li, and W. Dong-Sheng, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B19(8), 084202 (2010).
[CrossRef]

2009 (3)

2008 (4)

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4.,” Opt. Express16(21), 17092–17097 (2008).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
[CrossRef]

Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Diode-pumped multi-frequency Q-switched laser with intracavity cascade Raman emission,” Opt. Express16(11), 8286–8291 (2008).
[CrossRef] [PubMed]

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl.23(3), 121–126 (2008).
[CrossRef]

2007 (1)

L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun.273(1), 226–230 (2007).
[CrossRef]

2006 (3)

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B86(1), 65–70 (2006).
[CrossRef]

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun.260(2), 680–686 (2006).
[CrossRef]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006).
[CrossRef]

2005 (1)

2004 (1)

U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett.16(5), 1277–1279 (2004).
[CrossRef]

2003 (4)

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci.4(3), 241–253 (2003).
[CrossRef] [PubMed]

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” Appl. Phys. Lett.82(3), 325–327 (2003).
[CrossRef]

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

J. H. Liu, B. Ozygus, S. H. Yang, J. Erhard, U. Seelig, A. Ding, H. Weber, X. L. Meng, L. Zhu, L. J. Qin, C. L. Du, X. G. Xu, and Z. S. Shao, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. B20(4), 652–661 (2003).
[CrossRef]

2001 (1)

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

2000 (2)

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett.36(16), 1414–1416 (2000).
[CrossRef]

Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B70(4), 475–478 (2000).
[CrossRef]

1978 (1)

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Abdelsalam, D. G.

Apanasevich, P. A.

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

Batay, L. E.

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

Boixeda, P.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl.23(3), 121–126 (2008).
[CrossRef]

Butkus, R.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” Appl. Phys. Lett.82(3), 325–327 (2003).
[CrossRef]

Canalias, C.

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006).
[CrossRef]

Carmona, L. P.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl.23(3), 121–126 (2008).
[CrossRef]

Chang, J.

Chang, Y. T.

Chen, T.

Chen, W.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Chen, Y. F.

Cho, C. Y.

Cong, Z. H.

Danailov, M. B.

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
[CrossRef]

Demidovich, A.

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

Ding, A.

Ding, Y. J.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Ding, and Ioulia B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett.98(13), 131106 (2011).
[CrossRef]

Dong-Sheng, W.

Y. Xing-Peng, L. Qiang, C. Hai-Long, F. Xing, G. Ma-Li, and W. Dong-Sheng, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B19(8), 084202 (2010).
[CrossRef]

Du, C. L.

Dyer, P. E.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun.260(2), 680–686 (2006).
[CrossRef]

Eichler, H. J.

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci.4(3), 241–253 (2003).
[CrossRef] [PubMed]

Erhard, J.

Fan, S. Z.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B94(4), 585–588 (2009).
[CrossRef]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4.,” Opt. Express16(21), 17092–17097 (2008).
[CrossRef] [PubMed]

Fei, L. G.

L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun.273(1), 226–230 (2007).
[CrossRef]

Fragemann, A.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” Appl. Phys. Lett.82(3), 325–327 (2003).
[CrossRef]

Gad, G. M. A.

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci.4(3), 241–253 (2003).
[CrossRef] [PubMed]

Galeener, F. L.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Geils, R. H.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Grabtchikov, A. S.

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

Hai-Long, C.

Y. Xing-Peng, L. Qiang, C. Hai-Long, F. Xing, G. Ma-Li, and W. Dong-Sheng, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B19(8), 084202 (2010).
[CrossRef]

Hait, V. L.

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

He, J. L.

H. T. Huang, J. L. He, S. D. Liu, J. F. Yang, B. T. Zhang, and F. Q. Liu, “Efficient generation of 1096nm and 1572nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal,” Appl. Phys. B103(1), 129–135 (2011).
[CrossRef]

H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011).
[CrossRef]

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B102(4), 873–878 (2011).
[CrossRef]

H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express18(4), 3352–3357 (2010).
[CrossRef] [PubMed]

Huang, H. T.

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B102(4), 873–878 (2011).
[CrossRef]

H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011).
[CrossRef]

H. T. Huang, J. L. He, S. D. Liu, J. F. Yang, B. T. Zhang, and F. Q. Liu, “Efficient generation of 1096nm and 1572nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal,” Appl. Phys. B103(1), 129–135 (2011).
[CrossRef]

H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express18(4), 3352–3357 (2010).
[CrossRef] [PubMed]

Huang, Y. J.

Huang, Y. P.

Huber, G.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B86(1), 65–70 (2006).
[CrossRef]

Inagawa, Y.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Ireland, C. L. M.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun.260(2), 680–686 (2006).
[CrossRef]

Ito, H.

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett.36(16), 1414–1416 (2000).
[CrossRef]

Jaén, P.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl.23(3), 121–126 (2008).
[CrossRef]

Jiang, P. P.

Jin, G. F.

Kaminskii, A. A.

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci.4(3), 241–253 (2003).
[CrossRef] [PubMed]

Kang, J. U.

U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett.16(5), 1277–1279 (2004).
[CrossRef]

Kiefer, W.

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

Kim, C.-S.

U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett.16(5), 1277–1279 (2004).
[CrossRef]

Kim, D.

Kong, J.

Kuzmin, A. N.

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

Kuzmin, O. V.

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

Lanigan, S. W.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl.23(3), 121–126 (2008).
[CrossRef]

Laurell, F.

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006).
[CrossRef]

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” Appl. Phys. Lett.82(3), 325–327 (2003).
[CrossRef]

Li, Y.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol.21(5), 054016 (2010).
[CrossRef]

Lisinetskii, V. A.

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

Liu, F. Q.

H. T. Huang, J. L. He, S. D. Liu, J. F. Yang, B. T. Zhang, and F. Q. Liu, “Efficient generation of 1096nm and 1572nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal,” Appl. Phys. B103(1), 129–135 (2011).
[CrossRef]

H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011).
[CrossRef]

Liu, J. H.

Liu, S. D.

H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011).
[CrossRef]

H. T. Huang, J. L. He, S. D. Liu, J. F. Yang, B. T. Zhang, and F. Q. Liu, “Efficient generation of 1096nm and 1572nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal,” Appl. Phys. B103(1), 129–135 (2011).
[CrossRef]

Liu, Z. J.

Lünstedt, K.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B86(1), 65–70 (2006).
[CrossRef]

Magnusson, R.

Ma-Li, G.

Y. Xing-Peng, L. Qiang, C. Hai-Long, F. Xing, G. Ma-Li, and W. Dong-Sheng, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B19(8), 084202 (2010).
[CrossRef]

Meng, X. L.

Miao, Y. Y.

Mikkelsen, J. C.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Mildren, R. P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
[CrossRef]

Mosby, W. J.

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

Omatsu, T.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Orlovich, V. A.

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

Ozygus, B.

Pasiskevicius, V.

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006).
[CrossRef]

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” Appl. Phys. Lett.82(3), 325–327 (2003).
[CrossRef]

Pask, H. M.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
[CrossRef]

Pavel, N.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B86(1), 65–70 (2006).
[CrossRef]

Pearce, S.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun.260(2), 680–686 (2006).
[CrossRef]

Petermann, K.

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B86(1), 65–70 (2006).
[CrossRef]

Piper, J. A.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
[CrossRef]

Piskarskas, A.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” Appl. Phys. Lett.82(3), 325–327 (2003).
[CrossRef]

Qiang, L.

Y. Xing-Peng, L. Qiang, C. Hai-Long, F. Xing, G. Ma-Li, and W. Dong-Sheng, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B19(8), 084202 (2010).
[CrossRef]

Qin, L. J.

Ragam, S.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Ding, and Ioulia B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett.98(13), 131106 (2011).
[CrossRef]

Rhee, H.

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci.4(3), 241–253 (2003).
[CrossRef] [PubMed]

Seelig, U.

Shao, Z. S.

Sharma, U.

U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett.16(5), 1277–1279 (2004).
[CrossRef]

Shen, Y. H.

Shikata, J.

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett.36(16), 1414–1416 (2000).
[CrossRef]

Smilgevicius, V.

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” Appl. Phys. Lett.82(3), 325–327 (2003).
[CrossRef]

Spence, D. J.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
[CrossRef]

Su, K. W.

Sun, C. L.

Sun, D.

Sun, W. J.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B94(4), 585–588 (2009).
[CrossRef]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, Z. H. Cong, W. J. Sun, G. F. Jin, X. T. Tao, Y. X. Sun, and S. J. Zhang, “A diode side-pumped KTiOAsO4 Raman laser,” Opt. Express17(9), 6968–6974 (2009).
[CrossRef] [PubMed]

Sun, Y. X.

Takeuchi, N.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Tan, W. D.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B102(4), 775–779 (2011).
[CrossRef]

Tan, Y. D.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol.21(5), 054016 (2010).
[CrossRef]

Tang, D. Y.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B102(4), 775–779 (2011).
[CrossRef]

Taniuchi, T.

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett.36(16), 1414–1416 (2000).
[CrossRef]

Tao, X. T.

Tateda, M.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Usuki, Y.

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Vano-Galvan, S.

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl.23(3), 121–126 (2008).
[CrossRef]

Wang, H.

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B94(4), 585–588 (2009).
[CrossRef]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4.,” Opt. Express16(21), 17092–17097 (2008).
[CrossRef] [PubMed]

Wang, Q. P.

Wang, R.

Wang, Y.

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B102(4), 873–878 (2011).
[CrossRef]

Weber, H.

Wu, B.

Xing, F.

Y. Xing-Peng, L. Qiang, C. Hai-Long, F. Xing, G. Ma-Li, and W. Dong-Sheng, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B19(8), 084202 (2010).
[CrossRef]

Xing-Peng, Y.

Y. Xing-Peng, L. Qiang, C. Hai-Long, F. Xing, G. Ma-Li, and W. Dong-Sheng, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B19(8), 084202 (2010).
[CrossRef]

Xu, C. W.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B102(4), 775–779 (2011).
[CrossRef]

Xu, D. G.

Xu, J. L.

Xu, X. G.

Yang, D. Z.

Yang, H.

H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011).
[CrossRef]

Yang, H. W.

H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011).
[CrossRef]

Yang, J. F.

H. T. Huang, J. L. He, S. D. Liu, J. F. Yang, B. T. Zhang, and F. Q. Liu, “Efficient generation of 1096nm and 1572nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal,” Appl. Phys. B103(1), 129–135 (2011).
[CrossRef]

H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express18(4), 3352–3357 (2010).
[CrossRef] [PubMed]

Yang, S. H.

Yang, X. Q.

H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011).
[CrossRef]

Yang, Y.

H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011).
[CrossRef]

Yao, J. Q.

Yin, S. T.

Yu, H. H.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B102(4), 775–779 (2011).
[CrossRef]

Zhang, B. T.

H. T. Huang, J. L. He, S. D. Liu, J. F. Yang, B. T. Zhang, and F. Q. Liu, “Efficient generation of 1096nm and 1572nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal,” Appl. Phys. B103(1), 129–135 (2011).
[CrossRef]

H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express18(4), 3352–3357 (2010).
[CrossRef] [PubMed]

Zhang, C. G.

Zhang, F.

Zhang, H. J.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B102(4), 775–779 (2011).
[CrossRef]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B94(4), 585–588 (2009).
[CrossRef]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4.,” Opt. Express16(21), 17092–17097 (2008).
[CrossRef] [PubMed]

Zhang, J.

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B102(4), 775–779 (2011).
[CrossRef]

Zhang, Q.

Zhang, S. J.

Zhang, S. L.

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol.21(5), 054016 (2010).
[CrossRef]

L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun.273(1), 226–230 (2007).
[CrossRef]

Zhang, S. S.

Zhang, X. Y.

Zhao, P.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Ding, and Ioulia B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett.98(13), 131106 (2011).
[CrossRef]

Zhong, K.

Zhu, L.

Zotova, I. B.

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Ding, and Ioulia B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett.98(13), 131106 (2011).
[CrossRef]

Zuo, C. H.

Appl. Opt. (1)

Appl. Phys. B (7)

Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B70(4), 475–478 (2000).
[CrossRef]

K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912nm and 1063nm in Nd:GdVO4,” Appl. Phys. B86(1), 65–70 (2006).
[CrossRef]

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, H. H. Yu, and H. J. Zhang, “Dual-wavelength passively mode-locked Nd:GdVO4 laser with orthogonal polarizations,” Appl. Phys. B102(4), 775–779 (2011).
[CrossRef]

H. T. Huang, J. L. He, S. D. Liu, J. F. Yang, B. T. Zhang, and F. Q. Liu, “Efficient generation of 1096nm and 1572nm by simultaneous stimulated Raman scattering and optical parametric oscillation in one KTiOPO4 crystal,” Appl. Phys. B103(1), 129–135 (2011).
[CrossRef]

H. T. Huang, J. L. He, and Y. Wang, “Second Stokes 1129 nm generation in gray-trace resistance KTP intracavity driven by a diode-pumped Q-switched Nd:YVO4 laser,” Appl. Phys. B102(4), 873–878 (2011).
[CrossRef]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, S. J. Zhang, and H. J. Zhang, “A KTiOAsO4 Raman laser,” Appl. Phys. B94(4), 585–588 (2009).
[CrossRef]

A. Demidovich, P. A. Apanasevich, L. E. Batay, A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, O. V. Kuzmin, V. L. Hait, W. Kiefer, and M. B. Danailov, “Sub-nanosecond microchip laser with intracavity Raman conversion,” Appl. Phys. B76(5), 509–514 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978).
[CrossRef]

P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Ding, and Ioulia B. Zotova, “Power scalability and frequency agility of compact terahertz source based on frequency mixing from solid-state lasers,” Appl. Phys. Lett.98(13), 131106 (2011).
[CrossRef]

V. Pasiskevicius, C. Canalias, and F. Laurell, “Highly efficient stimulated Raman scattering of picosecond pulses in KTiOPO4,” Appl. Phys. Lett.88(4), 041110 (2006).
[CrossRef]

V. Pasiskevicius, A. Fragemann, F. Laurell, R. Butkus, V. Smilgevicius, and A. Piskarskas, “Enhanced stimulated Raman scattering in optical parametric oscillators from periodically poled KTiOPO4,” Appl. Phys. Lett.82(3), 325–327 (2003).
[CrossRef]

Chin. Phys. B (1)

Y. Xing-Peng, L. Qiang, C. Hai-Long, F. Xing, G. Ma-Li, and W. Dong-Sheng, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B19(8), 084202 (2010).
[CrossRef]

Electron. Lett. (1)

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett.36(16), 1414–1416 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Zhejiang Univ. Sci. (1)

H. J. Eichler, G. M. A. Gad, A. A. Kaminskii, and H. Rhee, “Raman crystal lasers in the visible and near-infrared,” J. Zhejiang Univ. Sci.4(3), 241–253 (2003).
[CrossRef] [PubMed]

Laser Phys. Lett. (1)

H. T. Huang, J. L. He, S. D. Liu, F. Q. Liu, X. Q. Yang, H. W. Yang, Y. Yang, and H. Yang, “Synchronized generation of 1534nm and 1572nm by the mixed optical parameter oscillation,” Laser Phys. Lett.8(5), 358–362 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol.21(5), 054016 (2010).
[CrossRef]

Med. Laser Appl. (1)

P. Boixeda, L. P. Carmona, S. Vano-Galvan, P. Jaén, and S. W. Lanigan, “Lanigan, “Advances in treatment of cutaneous and subcutaneous vascular anomalies by pulsed dual wavelength 595- and 1064-nm application,” Med. Laser Appl.23(3), 121–126 (2008).
[CrossRef]

Opt. Commun. (3)

L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun.273(1), 226–230 (2007).
[CrossRef]

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Solid-state Raman laser generating <1 ns, multi-kilohertz pulses at 1096 nm,” Opt. Commun.260(2), 680–686 (2006).
[CrossRef]

W. Chen, Y. Inagawa, T. Omatsu, M. Tateda, N. Takeuchi, and Y. Usuki, “Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser,” Opt. Commun.194(4-6), 401–407 (2001).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phot. Tech. Lett. (1)

U. Sharma, C.-S. Kim, and J. U. Kang, “Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications,” Phot. Tech. Lett.16(5), 1277–1279 (2004).
[CrossRef]

Prog. Quantum Electron. (1)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron.32(3-4), 121–158 (2008).
[CrossRef]

Other (1)

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The spontaneous Raman scattering spectra of KTP and KTA in the X(ZZ)X configuration.

Fig. 2
Fig. 2

Schematic diagram of the coupled SRS laser intracavity pumped by a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser.

Fig. 3
Fig. 3

Average output powers at 1091 nm and 1095 nm with respect to the LD pump power.

Fig. 4
Fig. 4

Optical spectrum of the dual-wavelength coupled SRS laser.

Fig. 5
Fig. 5

Pulse width and repetition rate with respect to the LD pump power.

Fig. 6
Fig. 6

Typical single pulse shape with the inset displaying the corresponding pulse train.

Tables (1)

Tables Icon

Table 1 Corresponding parameters for calculating relative Raman gain coefficients

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g= λ p λ s 2 N(dσ/dΩ) I p n s 2 hcπΔ ν
M= n S,KTP 2 n S,KTA 2 (1 R KTA P )(1 R KTA S ) (1 R KTP P )(1 R KTP S )

Metrics