Abstract

A multi-gigahertz frequency comb (MGFC)-based interferometer was developed for profilometry and tomography using a frequency variable supercontinuum (SC). The comparatively flattened and broadened SC light source with variable multi-gigahertz interval frequency was developed using an optical pulse synthesizer and highly nonlinear dispersion flattened fiber. The generated SC provided a stable interference output with a full width half maximum of 19 μm during interval frequency sweeping of over 400 MHz. We experimentally confirmed that the interference signal exhibited an envelope-only waveform without fringes, which enabled the drastic reduction of the sampling points resulting in high speed measurement. A full-field 3-D image with 320 × 256 × 300 pixels was acquired with a measurement time of only 10 seconds. It was demonstrated that the MGFC-based interferometer with the novel SC light source has the potential for application in a high speed full-field 3-D metrology.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ishii, J. Chen, and K. Murata, “Digital phase-measuring interferometry with a tunable laser diode,” Opt. Lett.12(4), 233–235 (1987).
    [CrossRef] [PubMed]
  2. O. Sasaki and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt.25(18), 3137–3140 (1986).
    [CrossRef] [PubMed]
  3. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
    [CrossRef]
  4. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett.29(24), 2846–2848 (2004).
    [CrossRef] [PubMed]
  5. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
    [CrossRef] [PubMed]
  6. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett.27(20), 1800–1802 (2002).
    [CrossRef] [PubMed]
  7. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt.39(30), 5512–5517 (2000).
    [CrossRef] [PubMed]
  8. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express17(9), 7011–7018 (2009).
    [CrossRef] [PubMed]
  9. Z. He and K. Hotate, “Distributed fiber-optics stress-location measurement by arbitrary shaping of optical coherence function,” J. Lightwave Technol.20(9), 1715–1723 (2002).
    [CrossRef]
  10. S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
    [CrossRef]
  11. J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun.282(16), 3308–3324 (2009).
    [CrossRef]
  12. S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).
  13. Z. Duan, Y. Miyamoto, and M. Takeda, “Dispersion-free optical coherence depth sensing with a spatial frequency comb generated by an angular spectrum modulator,” Opt. Express14(25), 12109–12121 (2006).
    [CrossRef] [PubMed]
  14. K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express20(7), 7237–7242 (2012).
    [CrossRef] [PubMed]
  15. S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
    [CrossRef] [PubMed]
  16. S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
    [CrossRef]
  17. K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
    [CrossRef]
  18. H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
    [CrossRef]
  19. S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
    [CrossRef]
  20. T. Ohta, N. Nishizawa, T. Ozawa, and K. Itoh, “Highly-sensitive and high-resolution all-fiber three-dimensional measurement system,” Appl. Opt.47(13), 2503–2509 (2008).
    [CrossRef] [PubMed]

2012 (1)

2010 (1)

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

2009 (3)

J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun.282(16), 3308–3324 (2009).
[CrossRef]

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express17(9), 7011–7018 (2009).
[CrossRef] [PubMed]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

2008 (2)

2007 (2)

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
[CrossRef]

2006 (3)

2004 (1)

2002 (2)

2001 (2)

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

2000 (1)

1987 (1)

1986 (1)

Aizawa, A.

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Alexeenko, I.

Apolonski, A.

Bizheva, K.

Chen, J.

Chen, Y.

Choi, S.

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

Coen, S.

Drexler, W.

Duan, Z.

Dudley, J. M.

Fercher, A. F.

Fujimoto, J. G.

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett.29(24), 2846–2848 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Genty, G.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

He, Z.

Hermann, B.

Holzwarth, R.

Hotate, K.

Hsiung, P.

Ippen, E. P.

Ishii, Y.

Itoh, K.

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Kashiwagi, K.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

Knight, J. C.

Körner, K.

Kourogi, M.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Kurokawa, T.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

Lee, S. J.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Mandai, K.

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Matsumoto, H.

Minoshima, K.

Miyamoto, D.

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Miyamoto, Y.

Miyatsuka, H.

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Moteki, D.

Murata, K.

Nishizawa, N.

Ohta, T.

Ohtsu, M.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Okazaki, H.

Osten, W.

Ozawa, T.

Pedrini, G.

Povazay, B.

Russell, P. St. J.

Sasaki, O.

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

O. Sasaki and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt.25(18), 3137–3140 (1986).
[CrossRef] [PubMed]

Sattmann, H.

Scherzer, E.

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Schwider, J.

J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun.282(16), 3308–3324 (2009).
[CrossRef]

Shioda, T.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

Steinmetz, T.

Suzuki, T.

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Takahashi, S.

Takamasu, K.

Takeda, M.

Tamura, N.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

Tanaka, Y.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

Tsuda, H.

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Wei, D.

Widiyatmoko, B.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Yamamoto, M.

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (1)

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (3)

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun.282(16), 3308–3324 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics