Abstract

A multi-gigahertz frequency comb (MGFC)-based interferometer was developed for profilometry and tomography using a frequency variable supercontinuum (SC). The comparatively flattened and broadened SC light source with variable multi-gigahertz interval frequency was developed using an optical pulse synthesizer and highly nonlinear dispersion flattened fiber. The generated SC provided a stable interference output with a full width half maximum of 19 μm during interval frequency sweeping of over 400 MHz. We experimentally confirmed that the interference signal exhibited an envelope-only waveform without fringes, which enabled the drastic reduction of the sampling points resulting in high speed measurement. A full-field 3-D image with 320 × 256 × 300 pixels was acquired with a measurement time of only 10 seconds. It was demonstrated that the MGFC-based interferometer with the novel SC light source has the potential for application in a high speed full-field 3-D metrology.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ishii, J. Chen, and K. Murata, “Digital phase-measuring interferometry with a tunable laser diode,” Opt. Lett.12(4), 233–235 (1987).
    [CrossRef] [PubMed]
  2. O. Sasaki and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt.25(18), 3137–3140 (1986).
    [CrossRef] [PubMed]
  3. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
    [CrossRef]
  4. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett.29(24), 2846–2848 (2004).
    [CrossRef] [PubMed]
  5. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
    [CrossRef] [PubMed]
  6. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett.27(20), 1800–1802 (2002).
    [CrossRef] [PubMed]
  7. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt.39(30), 5512–5517 (2000).
    [CrossRef] [PubMed]
  8. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express17(9), 7011–7018 (2009).
    [CrossRef] [PubMed]
  9. Z. He and K. Hotate, “Distributed fiber-optics stress-location measurement by arbitrary shaping of optical coherence function,” J. Lightwave Technol.20(9), 1715–1723 (2002).
    [CrossRef]
  10. S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
    [CrossRef]
  11. J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun.282(16), 3308–3324 (2009).
    [CrossRef]
  12. S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).
  13. Z. Duan, Y. Miyamoto, and M. Takeda, “Dispersion-free optical coherence depth sensing with a spatial frequency comb generated by an angular spectrum modulator,” Opt. Express14(25), 12109–12121 (2006).
    [CrossRef] [PubMed]
  14. K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, and W. Osten, “Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning,” Opt. Express20(7), 7237–7242 (2012).
    [CrossRef] [PubMed]
  15. S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
    [CrossRef] [PubMed]
  16. S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
    [CrossRef]
  17. K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
    [CrossRef]
  18. H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
    [CrossRef]
  19. S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
    [CrossRef]
  20. T. Ohta, N. Nishizawa, T. Ozawa, and K. Itoh, “Highly-sensitive and high-resolution all-fiber three-dimensional measurement system,” Appl. Opt.47(13), 2503–2509 (2008).
    [CrossRef] [PubMed]

2012 (1)

2010 (1)

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

2009 (3)

J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun.282(16), 3308–3324 (2009).
[CrossRef]

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express17(9), 7011–7018 (2009).
[CrossRef] [PubMed]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

2008 (2)

2007 (2)

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
[CrossRef]

2006 (3)

2004 (1)

2002 (2)

2001 (2)

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

2000 (1)

1987 (1)

1986 (1)

Aizawa, A.

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Alexeenko, I.

Apolonski, A.

Bizheva, K.

Chen, J.

Chen, Y.

Choi, S.

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

Coen, S.

Drexler, W.

Duan, Z.

Dudley, J. M.

Fercher, A. F.

Fujimoto, J. G.

N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett.29(24), 2846–2848 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Genty, G.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

He, Z.

Hermann, B.

Holzwarth, R.

Hotate, K.

Hsiung, P.

Ippen, E. P.

Ishii, Y.

Itoh, K.

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Kashiwagi, K.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

Knight, J. C.

Körner, K.

Kourogi, M.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Kurokawa, T.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

Lee, S. J.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Mandai, K.

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Matsumoto, H.

Minoshima, K.

Miyamoto, D.

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Miyamoto, Y.

Miyatsuka, H.

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Moteki, D.

Murata, K.

Nishizawa, N.

Ohta, T.

Ohtsu, M.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Okazaki, H.

Osten, W.

Ozawa, T.

Pedrini, G.

Povazay, B.

Russell, P. St. J.

Sasaki, O.

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

O. Sasaki and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt.25(18), 3137–3140 (1986).
[CrossRef] [PubMed]

Sattmann, H.

Scherzer, E.

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Schwider, J.

J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun.282(16), 3308–3324 (2009).
[CrossRef]

Shioda, T.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

Steinmetz, T.

Suzuki, T.

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Takahashi, S.

Takamasu, K.

Takeda, M.

Tamura, N.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

Tanaka, Y.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

Tsuda, H.

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Wei, D.

Widiyatmoko, B.

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

Yamamoto, M.

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (1)

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, A. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (3)

S. J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultrahigh scanning speed optical coherence tomography,” Jpn. J. Appl. Phys.40(Part 2, No. 8B), L878–L880 (2001).
[CrossRef]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Schwider, “Multiple beam Fizeau interferometer with filtered frequency comb illumination,” Opt. Commun.282(16), 3308–3324 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

S. Choi, H. Miyatsuka, O. Sasaki, and T. Suzuki, “Profilometry using Fizeau-interferometer based on optical comb interferometry and sinusoidal phase modulation method,” Proc. SPIE7855, 78550K1–78550K7 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of MGFC-based interferometer.

Fig. 2
Fig. 2

The interference waveforms (a) as a function of L as given in Eq. (4), and (b) as a function of νi for the N-th interference order as given in Eq. (1). The waveforms each correspond to the mechanical mirror scan and interval frequency sweeping, respectively. The sampling point in (b) can be reduced by comparison with that in (a). This is because one period of the interference fringe system in (a) requires at least eight sampling points to be acquired, whereas in the case of (b), a larger sampling step with the wavelength range is sufficient to acquire the intensity peak.

Fig. 3
Fig. 3

SC light source (SG: signal generator, PC: polarization controller, LN-PM: lithium-niobate phase modulator, IM: Intensity modulator, PM: phase modulator, HNLF: highly nonlinear fiber).

Fig. 4
Fig. 4

Synthesized sech2 pulse obtained by the OPS. (a) Auto-correlation waveforms, and (b) FWHM as a function of the repetition frequency from 12.3 to 12.7 GHz.

Fig. 5
Fig. 5

SC spectra generated by propagating (a) the HN-DSF and (b) the HN-DFF as the pulse peak power was increased (the interval frequency was 12.5 GHz).

Fig. 6
Fig. 6

(a) SC spectral envelopes and (b) fluctuation of −20dB-bandwidth of the SC generated from a 12.5 GHz sech2 pulse as a function of the repetition frequency sweep.

Fig. 7
Fig. 7

A schematic of a microscopic MGFC-based interferometer.

Fig. 8
Fig. 8

Interference waveforms of 6-th order; (a) intensity peak obtained by the interval frequency sweeping and (b) mirror scan. The interval frequency was varied for 40 MHz with 0.1 MHz step corresponding to the scan range of approximately 230 μm and step size of approximately 0.57 μm in (a). In (b) the mirror scan range was 200 μm with a 0.05 μm step. The number of sampling points in (a) and (b) are 400 and 4000 respectively.

Fig. 9
Fig. 9

Tomographic measurement of glass plate obtained by the interval frequency sweeping.

Fig. 10
Fig. 10

3-D surface profile of Japanese 10 yen coin; (a) measurement region, and (b) experimental result. The resulting image consisted of volume data with 320 × 256 × 300 pixels.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S N =A( ν i N nc L )cos(2π L λ c ),
A( ν i N nc L )
ΔL=N nc ν i 2 Δν,
A(L)cos(2π L λ c ),

Metrics