Abstract

Tailoring of acoustic properties in solids has many potential applications in both acoustics, i.e. acoustic gratings and waveguides, and photon-phonon interactions, i.e. stimulated Brillouin scattering (SBS). One immediate application is in the area of SBS suppression in optical fibers. We demonstrate, for the first time, a post-processing technique where hydrogen is diffused in to a fiber core and then locally and permanently bonded to core glass by a subsequent UV exposure. It is discovered that local acoustic velocity can be altered by as much as ~2% this way, with strong potential for much further improvements with an increased hydrogen pressure. It is also found that the large change in acoustic velocity is primarily due to a reduction in bulk modulus, possibly as a result of network bonds being broken up by the addition of OH bonds. It is possible to use this technique to precisely tailor acoustic velocity along a fiber for more optimized SBS suppression in a fiber amplifier. Change in Brillouin Stokes frequency of ~320MHz at 1.064μm was observed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express13(14), 5338–5346 (2005).
    [CrossRef] [PubMed]
  2. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express15(13), 8290–8299 (2007).
    [CrossRef] [PubMed]
  3. S. Gray, A. Liu, D. T. Walton, J. Wang, M. J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express15(25), 17044–17050 (2007).
    [CrossRef] [PubMed]
  4. P. D. Dragic, “SBS suppressed, single mode Yb-doped fiber amplifiers,” Proc. of OFC (2009) paper JThA10.
  5. M. D. Mermelstein, “SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers,” Opt. Express17(18), 16225–16237 (2009).
    [CrossRef] [PubMed]
  6. B. J. Ward and J. Spring, “Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles,” Opt. Express17(18), 15685–15699 (2009).
    [CrossRef] [PubMed]
  7. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE6873, 68730N, 68730N-7 (2008).
    [CrossRef]
  8. L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic waveguides,” J. Lightwave Technol.28, 3162–3175 (2010).
  9. L. Dong, “Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs,” J. Lightwave Technol.28, 3156–3161 (2010).
  10. K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing core radius,” Electron. Lett.31(8), 668–669 (1995).
    [CrossRef]
  11. V. I. Kovalev and R. G. Harrison, “Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,” Opt. Lett.31(2), 161–163 (2006).
    [CrossRef] [PubMed]
  12. S. L. Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperature (1.4-370K) and high hydrostatic pressure (1-250Bars),” Opt. Commun.219(1-6), 395–410 (2003).
    [CrossRef]
  13. N. Shibata, K. Okamoto, and Y. Azuma, “Longitudinal acoustic modes and Brillouin gain spectra for GeO2-doped core single mode fibers,” J. Opt. Soc. Am. B6(6), 1167–1174 (1989).
    [CrossRef]
  14. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, “Simulation and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol.22(2), 631–639 (2004).
    [CrossRef]
  15. K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with Brillouin frequency shift distribution,” J. Lightwave Technol.14(1), 50–57 (1996).
    [CrossRef]
  16. A. Evert, A. James, T. Hawkins, P. Foy, R. Stolen, P. Dragic, L. Dong, R. Rice, and J. Ballato, “Longitudinally-graded optical fibers,” Opt. Express20(16), 17393–17401 (2012).
    [CrossRef] [PubMed]
  17. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
    [CrossRef]
  18. J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers, as review,” J. Lightwave Technol.5(5), 712–733 (1987).
    [CrossRef]
  19. R. M. Atkins, V. Mizrahi, and P. J. Lemaire, “Enhanced photo-induced refractive index changes in optical fibers via low temperature hydrogen loading,” Proc. of CLEO (1993) paper CPD20.
  20. R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanism of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett.29(14), 1234–1235 (1993).
    [CrossRef]
  21. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a techqnue for achieving ultra-high UV photosneitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett.29(13), 1191–1193 (1993).
    [CrossRef]
  22. P. J. Lemaire, A. M. Vengsarkar, W. A. Reed, and D. J. DiGiovanni, “Thermal enhancement of UV photosensitivity in H2-loaded optical fibers,” Proc. of OFC (1995) paper WN1.
  23. P. J. Lemaire, A. M. Vengsarkar, W. A. Reed, and D. J. DiGiovanni, “Thermal enhancement of UV photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett.66(16), 2034–2037 (1995).
    [CrossRef]
  24. B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-induced reaction of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
    [CrossRef]
  25. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
    [CrossRef]
  26. G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE1516, 185–199 (1991).
    [CrossRef]
  27. I. Dajani, C. Vergien, C. Robin, and C. Zeringue, “Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output,” Opt. Express17(26), 24317–24333 (2009).
    [CrossRef] [PubMed]
  28. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett.22, 1012–1013 (1986).
  29. N. Shibata, R. G. Waarts, and R. P. Braun, “Brillouin-gain spectra for single-mode fibers having pure-silica, GeO2-doped, and P2O5-doped cores,” Opt. Lett.12(4), 269–271 (1987).
    [CrossRef] [PubMed]
  30. R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter18(32), 7507–7527 (2006).
    [CrossRef] [PubMed]
  31. J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys.87(6), 3113–3121 (2000).
    [CrossRef]
  32. M. D. Gallagher and U. L. Osterberg, “Ultraviolet absorption measurements in single-mode optical glass fibers,” Appl. Phys. Lett.60(15), 1791–1793 (1992).
    [CrossRef]
  33. R. M. Atkins, “Measurement of the ultraviolet absorption spectrum of optical fibers,” Opt. Lett.17(7), 469–471 (1992).
    [CrossRef] [PubMed]

2012 (2)

A. Evert, A. James, T. Hawkins, P. Foy, R. Stolen, P. Dragic, L. Dong, R. Rice, and J. Ballato, “Longitudinally-graded optical fibers,” Opt. Express20(16), 17393–17401 (2012).
[CrossRef] [PubMed]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
[CrossRef]

2010 (2)

2009 (3)

2008 (1)

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE6873, 68730N, 68730N-7 (2008).
[CrossRef]

2007 (2)

2006 (2)

V. I. Kovalev and R. G. Harrison, “Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,” Opt. Lett.31(2), 161–163 (2006).
[CrossRef] [PubMed]

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2003 (1)

S. L. Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperature (1.4-370K) and high hydrostatic pressure (1-250Bars),” Opt. Commun.219(1-6), 395–410 (2003).
[CrossRef]

2000 (1)

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys.87(6), 3113–3121 (2000).
[CrossRef]

1996 (2)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with Brillouin frequency shift distribution,” J. Lightwave Technol.14(1), 50–57 (1996).
[CrossRef]

1995 (2)

P. J. Lemaire, A. M. Vengsarkar, W. A. Reed, and D. J. DiGiovanni, “Thermal enhancement of UV photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett.66(16), 2034–2037 (1995).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing core radius,” Electron. Lett.31(8), 668–669 (1995).
[CrossRef]

1994 (1)

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-induced reaction of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

1993 (2)

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanism of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett.29(14), 1234–1235 (1993).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a techqnue for achieving ultra-high UV photosneitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

1992 (2)

M. D. Gallagher and U. L. Osterberg, “Ultraviolet absorption measurements in single-mode optical glass fibers,” Appl. Phys. Lett.60(15), 1791–1793 (1992).
[CrossRef]

R. M. Atkins, “Measurement of the ultraviolet absorption spectrum of optical fibers,” Opt. Lett.17(7), 469–471 (1992).
[CrossRef] [PubMed]

1991 (1)

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE1516, 185–199 (1991).
[CrossRef]

1989 (1)

1987 (2)

1986 (1)

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett.22, 1012–1013 (1986).

Andrejco, M. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE6873, 68730N, 68730N-7 (2008).
[CrossRef]

Atkins, R. M.

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanism of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett.29(14), 1234–1235 (1993).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a techqnue for achieving ultra-high UV photosneitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

R. M. Atkins, “Measurement of the ultraviolet absorption spectrum of optical fibers,” Opt. Lett.17(7), 469–471 (1992).
[CrossRef] [PubMed]

Azuma, Y.

Ballato, J.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
[CrossRef]

A. Evert, A. James, T. Hawkins, P. Foy, R. Stolen, P. Dragic, L. Dong, R. Rice, and J. Ballato, “Longitudinally-graded optical fibers,” Opt. Express20(16), 17393–17401 (2012).
[CrossRef] [PubMed]

Bickham, S. R.

Braun, R. P.

Cambon, P.

S. L. Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperature (1.4-370K) and high hydrostatic pressure (1-250Bars),” Opt. Commun.219(1-6), 395–410 (2003).
[CrossRef]

Champagnon, B.

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

Chen, X.

Chowdhury, D. Q.

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett.22, 1012–1013 (1986).

Chujo, W.

Crowley, A. M.

Dajani, I.

Demeritt, J. A.

Derosier, R. M.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett.22, 1012–1013 (1986).

DiGiovanni, D. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE6873, 68730N, 68730N-7 (2008).
[CrossRef]

P. J. Lemaire, A. M. Vengsarkar, W. A. Reed, and D. J. DiGiovanni, “Thermal enhancement of UV photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett.66(16), 2034–2037 (1995).
[CrossRef]

Dong, L.

Dragic, P.

A. Evert, A. James, T. Hawkins, P. Foy, R. Stolen, P. Dragic, L. Dong, R. Rice, and J. Ballato, “Longitudinally-graded optical fibers,” Opt. Express20(16), 17393–17401 (2012).
[CrossRef] [PubMed]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
[CrossRef]

Erdogan, T.

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanism of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett.29(14), 1234–1235 (1993).
[CrossRef]

Evert, A.

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Fini, J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE6873, 68730N, 68730N-7 (2008).
[CrossRef]

Floch, S. L.

S. L. Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperature (1.4-370K) and high hydrostatic pressure (1-250Bars),” Opt. Commun.219(1-6), 395–410 (2003).
[CrossRef]

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
[CrossRef]

A. Evert, A. James, T. Hawkins, P. Foy, R. Stolen, P. Dragic, L. Dong, R. Rice, and J. Ballato, “Longitudinally-graded optical fibers,” Opt. Express20(16), 17393–17401 (2012).
[CrossRef] [PubMed]

Gallagher, M. D.

M. D. Gallagher and U. L. Osterberg, “Ultraviolet absorption measurements in single-mode optical glass fibers,” Appl. Phys. Lett.60(15), 1791–1793 (1992).
[CrossRef]

Gray, S.

Greene, B. I.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-induced reaction of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Harrison, R. G.

Hawkins, T.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
[CrossRef]

A. Evert, A. James, T. Hawkins, P. Foy, R. Stolen, P. Dragic, L. Dong, R. Rice, and J. Ballato, “Longitudinally-graded optical fibers,” Opt. Express20(16), 17393–17401 (2012).
[CrossRef] [PubMed]

Headley, C.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE6873, 68730N, 68730N-7 (2008).
[CrossRef]

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

James, A.

Kobyakov, A.

Kosinski, S. G.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-induced reaction of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Kovalev, V. I.

Koyamada, Y.

Krol, D. M.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-induced reaction of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Kumar, S.

Kushibiki, J.

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys.87(6), 3113–3121 (2000).
[CrossRef]

Le Parc, R.

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

Lemaire, P. J.

P. J. Lemaire, A. M. Vengsarkar, W. A. Reed, and D. J. DiGiovanni, “Thermal enhancement of UV photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett.66(16), 2034–2037 (1995).
[CrossRef]

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-induced reaction of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a techqnue for achieving ultra-high UV photosneitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanism of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett.29(14), 1234–1235 (1993).
[CrossRef]

Levelut, C.

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

Li, M. J.

Liu, A.

Martinez, V.

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

McCurdy, A. H.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE6873, 68730N, 68730N-7 (2008).
[CrossRef]

Meltz, G.

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE1516, 185–199 (1991).
[CrossRef]

Mermelstein, M. D.

M. D. Mermelstein, “SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers,” Opt. Express17(18), 16225–16237 (2009).
[CrossRef] [PubMed]

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE6873, 68730N, 68730N-7 (2008).
[CrossRef]

Mishra, R.

Mizrahi, V.

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanism of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett.29(14), 1234–1235 (1993).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a techqnue for achieving ultra-high UV photosneitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

Morey, W. W.

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE1516, 185–199 (1991).
[CrossRef]

Morris, S.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
[CrossRef]

Nakamura, S.

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with Brillouin frequency shift distribution,” J. Lightwave Technol.14(1), 50–57 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing core radius,” Electron. Lett.31(8), 668–669 (1995).
[CrossRef]

Ohashi, Y.

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys.87(6), 3113–3121 (2000).
[CrossRef]

Okamoto, K.

Osterberg, U. L.

M. D. Gallagher and U. L. Osterberg, “Ultraviolet absorption measurements in single-mode optical glass fibers,” Appl. Phys. Lett.60(15), 1791–1793 (1992).
[CrossRef]

Pelous, J.

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

Reed, W. A.

P. J. Lemaire, A. M. Vengsarkar, W. A. Reed, and D. J. DiGiovanni, “Thermal enhancement of UV photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett.66(16), 2034–2037 (1995).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a techqnue for achieving ultra-high UV photosneitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

Rice, R.

Robin, C.

Ruffin, A. B.

Saeta, P. N.

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-induced reaction of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

Sato, S.

Sauer, M.

Shibata, N.

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with Brillouin frequency shift distribution,” J. Lightwave Technol.14(1), 50–57 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing core radius,” Electron. Lett.31(8), 668–669 (1995).
[CrossRef]

Sotobayashi, H.

Spring, J.

Stolen, R.

Stone, J.

J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers, as review,” J. Lightwave Technol.5(5), 712–733 (1987).
[CrossRef]

Tada, A.

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys.87(6), 3113–3121 (2000).
[CrossRef]

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with Brillouin frequency shift distribution,” J. Lightwave Technol.14(1), 50–57 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing core radius,” Electron. Lett.31(8), 668–669 (1995).
[CrossRef]

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett.22, 1012–1013 (1986).

Vengsarkar, A. M.

P. J. Lemaire, A. M. Vengsarkar, W. A. Reed, and D. J. DiGiovanni, “Thermal enhancement of UV photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett.66(16), 2034–2037 (1995).
[CrossRef]

Vergien, C.

Waarts, R. G.

Walton, D. T.

Wang, J.

Ward, B. J.

Wei, T. C.

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys.87(6), 3113–3121 (2000).
[CrossRef]

Yablon, A.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE6873, 68730N, 68730N-7 (2008).
[CrossRef]

Zenteno, L. A.

Zeringue, C.

Appl. Phys. Lett. (2)

P. J. Lemaire, A. M. Vengsarkar, W. A. Reed, and D. J. DiGiovanni, “Thermal enhancement of UV photosensitivity in GeO2 and P2O5 doped optical fibers,” Appl. Phys. Lett.66(16), 2034–2037 (1995).
[CrossRef]

M. D. Gallagher and U. L. Osterberg, “Ultraviolet absorption measurements in single-mode optical glass fibers,” Appl. Phys. Lett.60(15), 1791–1793 (1992).
[CrossRef]

Electron. Lett. (4)

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode optical fiber characterization,” Electron. Lett.22, 1012–1013 (1986).

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanism of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett.29(14), 1234–1235 (1993).
[CrossRef]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a techqnue for achieving ultra-high UV photosneitivity and thermal sensitivity in GeO2 doped optical fibers,” Electron. Lett.29(13), 1191–1193 (1993).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing core radius,” Electron. Lett.31(8), 668–669 (1995).
[CrossRef]

J. Appl. Phys. (1)

J. Kushibiki, T. C. Wei, Y. Ohashi, and A. Tada, “Ultrasonic microspectroscopy characterization of silica glass,” J. Appl. Phys.87(6), 3113–3121 (2000).
[CrossRef]

J. Lightwave Technol. (5)

J. Non-Cryst. Solids (2)

B. I. Greene, D. M. Krol, S. G. Kosinski, P. J. Lemaire, and P. N. Saeta, “Thermal and photo-induced reaction of H2 with germanosilicate optical fibers,” J. Non-Cryst. Solids168(1-2), 195–199 (1994).
[CrossRef]

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

R. Le Parc, C. Levelut, J. Pelous, V. Martinez, and B. Champagnon, “Influence of fictive temperature and composition of silica glass on anomalous elastic behaviour,” J. Phys. Condens. Matter18(32), 7507–7527 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics6(9), 629–633 (2012).
[CrossRef]

Opt. Commun. (1)

S. L. Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperature (1.4-370K) and high hydrostatic pressure (1-250Bars),” Opt. Commun.219(1-6), 395–410 (2003).
[CrossRef]

Opt. Express (7)

A. Evert, A. James, T. Hawkins, P. Foy, R. Stolen, P. Dragic, L. Dong, R. Rice, and J. Ballato, “Longitudinally-graded optical fibers,” Opt. Express20(16), 17393–17401 (2012).
[CrossRef] [PubMed]

M. D. Mermelstein, “SBS threshold measurements and acoustic beam propagation modeling in guiding and anti-guiding single mode optical fibers,” Opt. Express17(18), 16225–16237 (2009).
[CrossRef] [PubMed]

B. J. Ward and J. Spring, “Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with non-uniform acoustic velocity profiles,” Opt. Express17(18), 15685–15699 (2009).
[CrossRef] [PubMed]

A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express13(14), 5338–5346 (2005).
[CrossRef] [PubMed]

M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express15(13), 8290–8299 (2007).
[CrossRef] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M. J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, and L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express15(25), 17044–17050 (2007).
[CrossRef] [PubMed]

I. Dajani, C. Vergien, C. Robin, and C. Zeringue, “Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output,” Opt. Express17(26), 24317–24333 (2009).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. SPIE (2)

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE6873, 68730N, 68730N-7 (2008).
[CrossRef]

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE1516, 185–199 (1991).
[CrossRef]

Other (3)

P. J. Lemaire, A. M. Vengsarkar, W. A. Reed, and D. J. DiGiovanni, “Thermal enhancement of UV photosensitivity in H2-loaded optical fibers,” Proc. of OFC (1995) paper WN1.

P. D. Dragic, “SBS suppressed, single mode Yb-doped fiber amplifiers,” Proc. of OFC (2009) paper JThA10.

R. M. Atkins, V. Mizrahi, and P. J. Lemaire, “Enhanced photo-induced refractive index changes in optical fibers via low temperature hydrogen loading,” Proc. of CLEO (1993) paper CPD20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SBS in a fiber amplifier with varying local Brillouin frequency shift.

Fig. 2
Fig. 2

Setup for Brillouin gain measurement.

Fig. 3
Fig. 3

Measured Brillouin gain spectrum for (a) 2.7m original fiber, (b) 0.3m treated fiber with 4150 wt ppm OH and 0.4m untreated fiber, (c) 0.1m treated fiber with 5600 wt ppm OH and 0.36m untreated fiber and (d) 0.1m treated fiber with 12500 wt ppm OH and 0.4m untreated fiber.

Fig. 4
Fig. 4

Measured change in relative Brillouin frequency shift due to treatment versus measured OH level in the treated fiber, red solid line is from Eq. (3) assuming ΔE/E changing at −4% per wt% of OH, and (b) Ratio of Brillouin gain per unit length in the treated fiber over that of the original fiber versus measured change in Brillouin frequency shift.

Fig. 5
Fig. 5

(a) Normalized measured Brillouin gain spectra of a fiber UV-exposed by launching UV light into the first end of the fiber. The fiber was 1.9m long. It was then successively cut-back from the second end to shorter lengths. Brillouin gain was measured for each length of fiber by launching probe into the first end of the fiber. The fiber lengths are shown. (b) The Brillouin frequency shift along the length of fiber obtained by curve fitting the measured Brillouin gain spectrum for each length of fiber. An exponential fit is also shown in solid black line.

Fig. 6
Fig. 6

(a) Cross section of the fiber. (b) Image of UV light at the output of the 1.9m fiber.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

v a = E ρ
λ=2nΛ
f B = v a Λ = 2n v a λ = 2n λ E ρ

Metrics