Abstract

We present numerical and experimental results on inhibiting diffraction losses associated with the lowest order transverse electric (TE1) mode of a terahertz (THz) parallel-plate waveguide (PPWG) via the use of slightly concave plates. We find that there is an optimal radius of curvature that inhibits the diffraction for a given waveguide operating at a given frequency. We also find that introducing this curvature does not introduce any additional group-velocity dispersion. These results support the possibility of realizing long range transport of THz radiation using the TE1 mode of the PPWG.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000).
    [CrossRef]
  2. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000).
    [CrossRef]
  3. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys.88(7), 4449–4451 (2000).
    [CrossRef]
  4. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
    [CrossRef] [PubMed]
  5. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  6. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
    [CrossRef]
  7. T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps electrical pulses on sub-mm coaxial transmission lines,” Appl. Phys. Lett.85(25), 6092–6094 (2004).
    [CrossRef]
  8. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
    [CrossRef]
  9. K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B22(9), 2001–2008 (2005).
    [CrossRef]
  10. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
    [CrossRef] [PubMed]
  11. M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.90(6), 061111 (2007).
    [CrossRef]
  12. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–15062 (2009).
    [CrossRef] [PubMed]
  13. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009).
    [CrossRef]
  14. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B26(9), A6–A13 (2009).
    [CrossRef]
  15. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
    [CrossRef] [PubMed]
  16. T. A. Abele, D. A. Alsberg, and P. T. Hutchison, “A high-capacity digital communication system using TE01 transmission in circular waveguide,” IEEE Trans. Microw. Theory Tech.23(4), 326–333 (1975).
    [CrossRef]
  17. H. Nishihara, T. Inoue, and J. Koyama, “Low-loss parallel plate waveguide at 10.6 μm,” Appl. Phys. Lett.25(7), 391–393 (1974).
    [CrossRef]
  18. Y. Mizushima, T. Sugeta, T. Urisu, H. Nishihara, and J. Koyama, “Ultralow loss waveguide for long distance transmission,” Appl. Opt.19(19), 3259–3260 (1980).
    [CrossRef] [PubMed]
  19. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999).
  20. J. C. G. Lesurf, Millimetre-Wave Optics, Devices, and Systems (Taylor & Francis, New York, 1990).
  21. D. M. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, 2002).
  22. D. M. Pozar, Microwave Engineering (John Wiley, 2005).
  23. Y. H. Avetisyan, A. H. Makaryan, K. Khachatryan, and A. Hakhoumian, “Undistorted terahertz pulse propagation in slightly curved parallel plate waveguide and its use in time-domain spectroscopy,” Armenian J. Phys.2, 122–128 (2009).

2009 (5)

2007 (2)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.90(6), 061111 (2007).
[CrossRef]

2005 (2)

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B22(9), 2001–2008 (2005).
[CrossRef]

2004 (2)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps electrical pulses on sub-mm coaxial transmission lines,” Appl. Phys. Lett.85(25), 6092–6094 (2004).
[CrossRef]

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

2001 (1)

2000 (3)

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

1980 (1)

1975 (1)

T. A. Abele, D. A. Alsberg, and P. T. Hutchison, “A high-capacity digital communication system using TE01 transmission in circular waveguide,” IEEE Trans. Microw. Theory Tech.23(4), 326–333 (1975).
[CrossRef]

1974 (1)

H. Nishihara, T. Inoue, and J. Koyama, “Low-loss parallel plate waveguide at 10.6 μm,” Appl. Phys. Lett.25(7), 391–393 (1974).
[CrossRef]

Abbott, D.

Abele, T. A.

T. A. Abele, D. A. Alsberg, and P. T. Hutchison, “A high-capacity digital communication system using TE01 transmission in circular waveguide,” IEEE Trans. Microw. Theory Tech.23(4), 326–333 (1975).
[CrossRef]

Afshar V, S.

Alsberg, D. A.

T. A. Abele, D. A. Alsberg, and P. T. Hutchison, “A high-capacity digital communication system using TE01 transmission in circular waveguide,” IEEE Trans. Microw. Theory Tech.23(4), 326–333 (1975).
[CrossRef]

Atakaramians, S.

Avetisyan, Y. H.

Y. H. Avetisyan, A. H. Makaryan, K. Khachatryan, and A. Hakhoumian, “Undistorted terahertz pulse propagation in slightly curved parallel plate waveguide and its use in time-domain spectroscopy,” Armenian J. Phys.2, 122–128 (2009).

Bowden, B.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

Ebendorff-Heidepriem, H.

Fischer, B. M.

Gallot, G.

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps electrical pulses on sub-mm coaxial transmission lines,” Appl. Phys. Lett.85(25), 6092–6094 (2004).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
[CrossRef] [PubMed]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000).
[CrossRef]

Hakhoumian, A.

Y. H. Avetisyan, A. H. Makaryan, K. Khachatryan, and A. Hakhoumian, “Undistorted terahertz pulse propagation in slightly curved parallel plate waveguide and its use in time-domain spectroscopy,” Armenian J. Phys.2, 122–128 (2009).

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

Harrington, J. A.

Hutchison, P. T.

T. A. Abele, D. A. Alsberg, and P. T. Hutchison, “A high-capacity digital communication system using TE01 transmission in circular waveguide,” IEEE Trans. Microw. Theory Tech.23(4), 326–333 (1975).
[CrossRef]

Inoue, T.

H. Nishihara, T. Inoue, and J. Koyama, “Low-loss parallel plate waveguide at 10.6 μm,” Appl. Phys. Lett.25(7), 391–393 (1974).
[CrossRef]

Jamison, S. P.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps electrical pulses on sub-mm coaxial transmission lines,” Appl. Phys. Lett.85(25), 6092–6094 (2004).
[CrossRef]

Khachatryan, K.

Y. H. Avetisyan, A. H. Makaryan, K. Khachatryan, and A. Hakhoumian, “Undistorted terahertz pulse propagation in slightly curved parallel plate waveguide and its use in time-domain spectroscopy,” Armenian J. Phys.2, 122–128 (2009).

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

Koyama, J.

Y. Mizushima, T. Sugeta, T. Urisu, H. Nishihara, and J. Koyama, “Ultralow loss waveguide for long distance transmission,” Appl. Opt.19(19), 3259–3260 (1980).
[CrossRef] [PubMed]

H. Nishihara, T. Inoue, and J. Koyama, “Low-loss parallel plate waveguide at 10.6 μm,” Appl. Phys. Lett.25(7), 391–393 (1974).
[CrossRef]

Kurz, H.

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.90(6), 061111 (2007).
[CrossRef]

Makaryan, A. H.

Y. H. Avetisyan, A. H. Makaryan, K. Khachatryan, and A. Hakhoumian, “Undistorted terahertz pulse propagation in slightly curved parallel plate waveguide and its use in time-domain spectroscopy,” Armenian J. Phys.2, 122–128 (2009).

Mbonye, M.

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009).
[CrossRef]

McGowan, R. W.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000).
[CrossRef]

Mendis, R.

Mitrofanov, O.

Mittleman, D. M.

Mizushima, Y.

Monro, T. M.

Nagel, M.

Nishihara, H.

Y. Mizushima, T. Sugeta, T. Urisu, H. Nishihara, and J. Koyama, “Ultralow loss waveguide for long distance transmission,” Appl. Opt.19(19), 3259–3260 (1980).
[CrossRef] [PubMed]

H. Nishihara, T. Inoue, and J. Koyama, “Low-loss parallel plate waveguide at 10.6 μm,” Appl. Phys. Lett.25(7), 391–393 (1974).
[CrossRef]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

Sugeta, T.

Urisu, T.

Wachter, M.

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.90(6), 061111 (2007).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B22(9), 2001–2008 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett.90(6), 061111 (2007).
[CrossRef]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps electrical pulses on sub-mm coaxial transmission lines,” Appl. Phys. Lett.85(25), 6092–6094 (2004).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000).
[CrossRef]

H. Nishihara, T. Inoue, and J. Koyama, “Low-loss parallel plate waveguide at 10.6 μm,” Appl. Phys. Lett.25(7), 391–393 (1974).
[CrossRef]

Armenian J. Phys. (1)

Y. H. Avetisyan, A. H. Makaryan, K. Khachatryan, and A. Hakhoumian, “Undistorted terahertz pulse propagation in slightly curved parallel plate waveguide and its use in time-domain spectroscopy,” Armenian J. Phys.2, 122–128 (2009).

IEEE Trans. Microw. Theory Tech. (1)

T. A. Abele, D. A. Alsberg, and P. T. Hutchison, “A high-capacity digital communication system using TE01 transmission in circular waveguide,” IEEE Trans. Microw. Theory Tech.23(4), 326–333 (1975).
[CrossRef]

J. Appl. Phys. (1)

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Other (4)

J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999).

J. C. G. Lesurf, Millimetre-Wave Optics, Devices, and Systems (Taylor & Francis, New York, 1990).

D. M. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, 2002).

D. M. Pozar, Microwave Engineering (John Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Results of numerical simulations of wave propagation in two different waveguide geometries. These display the electric-field slices in the x-z plane for a 0.1 THz wave propagating inside (a) a flat-surface PPWG, and (b) a curved-surface waveguide with curvature radius R = 6.7 cm. The thin black vertical lines denote transverse work planes at which the power flow can be extracted. The upper inset shows the direction of the input electric field. (c) Energy confinement as a function of propagation length for several values of the surface curvature.

Fig. 2
Fig. 2

(a) Longitudinal cross-section of the PPWG showing the path of the “bouncing plane wave” for five bounces. (b) Schematic of a curved-surface waveguide with its input electric field polarized parallel to the (nominal) inner plate surfaces to excite the TE1 mode. The THz receiver is shown scanning across the output face.

Fig. 3
Fig. 3

(a) Input THz pulse, and (b) output THz pulse for a flat-surface PPWG and a curved-surface waveguide with curvature radius R = 6.7 cm, measured on axis. The corresponding amplitude spectra are shown as insets.

Fig. 4
Fig. 4

Two dimensional color plots showing the electric field distribution measured across the output face of a flat-surface PPWG and curved-surface waveguides with curvature radii of: R = 6.7 cm, R = 20 cm, and R = 50 cm. Panels (a) and (b) are for the frequencies of 0.1 THz and 0.3 THz, respectively.

Fig. 5
Fig. 5

Line profiles corresponding to the color plots shown in Fig. 4. They give the detected electric field amplitude at the output of the waveguides, when the receiver is scanned across the x axis centered between the plates, as shown schematically in the inset.

Fig. 6
Fig. 6

Measured FWHM of the electric field profile at the central x axis of the output face of the waveguide as a function of 1/R. The discrete symbols are the measured values at several frequencies and the lines are least-square fits. The error bars shown for the 0.1 THz data points are representative for all the data points. The inset shows a plot of the slope of each fitted line shown in the main figure, versus frequency, and the corresponding least-square fit.

Fig. 7
Fig. 7

Measured values of the group velocity (with respect to c) for the waveguides with curvature R = 6.7 cm (circles), and R = 50 cm (squares), and flat, i.e., no curvature (diamonds) plotted along with the theoretical curve for a flat-surface waveguide. In the spectral range beyond about 20 GHz, we estimate an experimental error of a few percent for all three cases.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ= cos 1 ( c ν2b ),
R= 2 b 2 ν c .
E out (ω)= E in (ω)TCexp(jβL)exp(αL),

Metrics