Abstract

We investigate the influence of a light beam carrying an orbital angular momentum on the current density of an electron wave packet in a semiconductor stripe. It is shown that due to the photo-induced torque the electron density can be deflected to one of the stripe sides. The direction of the deflection is controlled by the direction of the light orbital momentum. In addition the net current density can be enhanced. This is a photovoltaic effect that can be registered by measuring the generated voltage drop across the stripe and/or the current increase.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3, 305–310 (2007).
    [CrossRef]
  2. L. Allen, S. M. Barnett, and M. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
    [CrossRef]
  3. L. Allen, “Introduction to the atoms and angular momentum of light special issue,” J. Opt. B: Quantum Semiclass. Opt.4, S1–S6 (2002).
    [CrossRef]
  4. S. Barreiro and J. W. R. Tabosa, “Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms,” Phys. Rev. Lett.90, 133001 (2003).
    [CrossRef] [PubMed]
  5. M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London)394, 348–350 (1998).
    [CrossRef]
  6. L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt.4, S66–S72 (2002).
    [CrossRef]
  7. S. Al-Awfi and M. Babiker, “Atomic motion in hollow submicron circular cylinders,” Phys. Rev. A61, 033401 (2000).
    [CrossRef]
  8. F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A71, 055401 (2005).
    [CrossRef]
  9. K. Helmerson and W. D. Phillips, “Rotating atoms with light,” in Twisted Photons: Applications of Light with Orbital Angular Momentum, J. J. Torres and L. Torner, eds. (WILEY-VCH, Weinheim, 2011), pp. 215–220.
  10. G. F. Quinteiro and J. Berakdar, “Electric currents induced by twisted light in quantum rings,” Opt. Express17, 20465–20475 (2009).
    [CrossRef] [PubMed]
  11. G. F. Quinteiro and P. I. Tamborenea, “Theory of the optical absorption of light carrying orbital angular momentum by semiconductors,” EPL85, 47001 (2009).
    [CrossRef]
  12. M. Gratzel, “Photoelectrochemical cells,” Nature (London)414, 338–344 (2001).
    [CrossRef]
  13. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Materials6, 497–500 (2007).
    [CrossRef]
  14. B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed.47, 58–77 (2008).
    [CrossRef]
  15. X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett.5, 579–583 (2005).
    [CrossRef] [PubMed]
  16. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Materials4, 864–868 (2005).
    [CrossRef]
  17. D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics2, 105–109 (2008).
    [CrossRef]
  18. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
    [CrossRef]
  19. N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron.24, 951–962 (1992).
    [CrossRef]
  20. S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of laguerre-gaussian laser modes using diffractive optics,” Phys. Rev. A66, 043801 (2002).
    [CrossRef]
  21. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
    [CrossRef] [PubMed]
  22. M. Beijersbergen, L. Allen, H. van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123 – 132 (1993).
    [CrossRef]
  23. A. Thakur and J. Berakdar, “Self-focusing and defocusing oftwisted light in non-linear media,” Opt. Express18, 27691–27696 (2010).
    [CrossRef]
  24. G. F. Quinteiro and P. I. Tamborenea, “Electronic transitions in disk-shaped quantum dots induced by twisted light,” Phys. Rev. B79, 155450 (2009).
    [CrossRef]
  25. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Materials7, 435–441 (2008).
    [CrossRef]
  26. J. Zhao, G. Zheng, S. Li, H. Zhou, Y. Ma, R. Zhang, Y. Shi, and P. He, “A hyperlens-based device for nanoscale focusing of light,” Chin. Opt. Lett.10, 042302 (2012).
    [CrossRef]
  27. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007).
    [CrossRef]
  28. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett.88, 053601 (2002).
    [CrossRef]
  29. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett.22, 52–54 (1997).
    [CrossRef] [PubMed]
  30. K. T. Gahagan and J. G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett.21, 827–829 (1996).
    [CrossRef] [PubMed]
  31. R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).
  32. G. Kopp and J. L. Lean, “A new, lower value of total solar irradiance: Evidence and climate significance,” Geophys. Res. Lett.38, L01706 (2011).
    [CrossRef]

2012 (1)

2011 (1)

G. Kopp and J. L. Lean, “A new, lower value of total solar irradiance: Evidence and climate significance,” Geophys. Res. Lett.38, L01706 (2011).
[CrossRef]

2010 (1)

2009 (3)

G. F. Quinteiro and P. I. Tamborenea, “Electronic transitions in disk-shaped quantum dots induced by twisted light,” Phys. Rev. B79, 155450 (2009).
[CrossRef]

G. F. Quinteiro and J. Berakdar, “Electric currents induced by twisted light in quantum rings,” Opt. Express17, 20465–20475 (2009).
[CrossRef] [PubMed]

G. F. Quinteiro and P. I. Tamborenea, “Theory of the optical absorption of light carrying orbital angular momentum by semiconductors,” EPL85, 47001 (2009).
[CrossRef]

2008 (3)

B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed.47, 58–77 (2008).
[CrossRef]

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics2, 105–109 (2008).
[CrossRef]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Materials7, 435–441 (2008).
[CrossRef]

2007 (3)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007).
[CrossRef]

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Materials6, 497–500 (2007).
[CrossRef]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3, 305–310 (2007).
[CrossRef]

2005 (3)

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A71, 055401 (2005).
[CrossRef]

X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett.5, 579–583 (2005).
[CrossRef] [PubMed]

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Materials4, 864–868 (2005).
[CrossRef]

2003 (1)

S. Barreiro and J. W. R. Tabosa, “Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms,” Phys. Rev. Lett.90, 133001 (2003).
[CrossRef] [PubMed]

2002 (4)

L. Allen, “Introduction to the atoms and angular momentum of light special issue,” J. Opt. B: Quantum Semiclass. Opt.4, S1–S6 (2002).
[CrossRef]

L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt.4, S66–S72 (2002).
[CrossRef]

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of laguerre-gaussian laser modes using diffractive optics,” Phys. Rev. A66, 043801 (2002).
[CrossRef]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett.88, 053601 (2002).
[CrossRef]

2001 (1)

M. Gratzel, “Photoelectrochemical cells,” Nature (London)414, 338–344 (2001).
[CrossRef]

2000 (1)

S. Al-Awfi and M. Babiker, “Atomic motion in hollow submicron circular cylinders,” Phys. Rev. A61, 033401 (2000).
[CrossRef]

1998 (1)

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London)394, 348–350 (1998).
[CrossRef]

1997 (1)

1996 (1)

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

1993 (1)

M. Beijersbergen, L. Allen, H. van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123 – 132 (1993).
[CrossRef]

1992 (2)

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron.24, 951–962 (1992).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

Abraham, E. R. I.

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of laguerre-gaussian laser modes using diffractive optics,” Phys. Rev. A66, 043801 (2002).
[CrossRef]

Al-Awfi, S.

S. Al-Awfi and M. Babiker, “Atomic motion in hollow submicron circular cylinders,” Phys. Rev. A61, 033401 (2000).
[CrossRef]

Allen, L.

L. Allen, “Introduction to the atoms and angular momentum of light special issue,” J. Opt. B: Quantum Semiclass. Opt.4, S1–S6 (2002).
[CrossRef]

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett.88, 053601 (2002).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett.22, 52–54 (1997).
[CrossRef] [PubMed]

M. Beijersbergen, L. Allen, H. van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123 – 132 (1993).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

L. Allen, S. M. Barnett, and M. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
[CrossRef]

Andrews, D. L.

L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt.4, S66–S72 (2002).
[CrossRef]

Araoka, F.

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A71, 055401 (2005).
[CrossRef]

Babiker, M.

L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt.4, S66–S72 (2002).
[CrossRef]

S. Al-Awfi and M. Babiker, “Atomic motion in hollow submicron circular cylinders,” Phys. Rev. A61, 033401 (2000).
[CrossRef]

Barnett, S. M.

L. Allen, S. M. Barnett, and M. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
[CrossRef]

Barreiro, S.

S. Barreiro and J. W. R. Tabosa, “Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms,” Phys. Rev. Lett.90, 133001 (2003).
[CrossRef] [PubMed]

Bazan, G. C.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Materials6, 497–500 (2007).
[CrossRef]

Beijersbergen, M.

M. Beijersbergen, L. Allen, H. van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123 – 132 (1993).
[CrossRef]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

Berakdar, J.

Clays, K.

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A71, 055401 (2005).
[CrossRef]

Coates, N. E.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Materials6, 497–500 (2007).
[CrossRef]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

Dávila Romero, L. C.

L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt.4, S66–S72 (2002).
[CrossRef]

Dholakia, K.

Emery, K.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Materials4, 864–868 (2005).
[CrossRef]

Fréchet, J. M. J.

B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed.47, 58–77 (2008).
[CrossRef]

Friese, M.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London)394, 348–350 (1998).
[CrossRef]

Gahagan, K. T.

Gratzel, M.

M. Gratzel, “Photoelectrochemical cells,” Nature (London)414, 338–344 (2001).
[CrossRef]

Gregorkiewicz, T.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics2, 105–109 (2008).
[CrossRef]

He, P.

Heckenberg, N.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London)394, 348–350 (1998).
[CrossRef]

Heckenberg, N. R.

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron.24, 951–962 (1992).
[CrossRef]

Heeger, A. J.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Materials6, 497–500 (2007).
[CrossRef]

Helmerson, K.

K. Helmerson and W. D. Phillips, “Rotating atoms with light,” in Twisted Photons: Applications of Light with Orbital Angular Momentum, J. J. Torres and L. Torner, eds. (WILEY-VCH, Weinheim, 2011), pp. 215–220.

Huang, J.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Materials4, 864–868 (2005).
[CrossRef]

Izeddin, I.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics2, 105–109 (2008).
[CrossRef]

Janssen, R. A. J.

X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett.5, 579–583 (2005).
[CrossRef] [PubMed]

Kennedy, S. A.

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of laguerre-gaussian laser modes using diffractive optics,” Phys. Rev. A66, 043801 (2002).
[CrossRef]

Kim, J. Y.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Materials6, 497–500 (2007).
[CrossRef]

Kopp, G.

G. Kopp and J. L. Lean, “A new, lower value of total solar irradiance: Evidence and climate significance,” Geophys. Res. Lett.38, L01706 (2011).
[CrossRef]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

Kroon, J. M.

X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett.5, 579–583 (2005).
[CrossRef] [PubMed]

Lean, J. L.

G. Kopp and J. L. Lean, “A new, lower value of total solar irradiance: Evidence and climate significance,” Geophys. Res. Lett.38, L01706 (2011).
[CrossRef]

Li, G.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Materials4, 864–868 (2005).
[CrossRef]

Li, S.

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Materials7, 435–441 (2008).
[CrossRef]

Loos, J.

X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett.5, 579–583 (2005).
[CrossRef] [PubMed]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).

Ma, W. L.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Materials6, 497–500 (2007).
[CrossRef]

Ma, Y.

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett.88, 053601 (2002).
[CrossRef]

McDuff, R.

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron.24, 951–962 (1992).
[CrossRef]

Michels, M. A. J.

X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett.5, 579–583 (2005).
[CrossRef] [PubMed]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3, 305–310 (2007).
[CrossRef]

Moriarty, T.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Materials4, 864–868 (2005).
[CrossRef]

Moses, D.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Materials6, 497–500 (2007).
[CrossRef]

Nieminen, T.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London)394, 348–350 (1998).
[CrossRef]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett.88, 053601 (2002).
[CrossRef]

Padgett, M.

L. Allen, S. M. Barnett, and M. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
[CrossRef]

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett.88, 053601 (2002).
[CrossRef]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett.22, 52–54 (1997).
[CrossRef] [PubMed]

Peet, J.

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Materials6, 497–500 (2007).
[CrossRef]

Persoons, A.

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A71, 055401 (2005).
[CrossRef]

Phillips, W. D.

K. Helmerson and W. D. Phillips, “Rotating atoms with light,” in Twisted Photons: Applications of Light with Orbital Angular Momentum, J. J. Torres and L. Torner, eds. (WILEY-VCH, Weinheim, 2011), pp. 215–220.

Porterfield, J. Z.

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of laguerre-gaussian laser modes using diffractive optics,” Phys. Rev. A66, 043801 (2002).
[CrossRef]

Quinteiro, G. F.

G. F. Quinteiro and P. I. Tamborenea, “Theory of the optical absorption of light carrying orbital angular momentum by semiconductors,” EPL85, 47001 (2009).
[CrossRef]

G. F. Quinteiro and P. I. Tamborenea, “Electronic transitions in disk-shaped quantum dots induced by twisted light,” Phys. Rev. B79, 155450 (2009).
[CrossRef]

G. F. Quinteiro and J. Berakdar, “Electric currents induced by twisted light in quantum rings,” Opt. Express17, 20465–20475 (2009).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London)394, 348–350 (1998).
[CrossRef]

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron.24, 951–962 (1992).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007).
[CrossRef]

Shi, Y.

Shrotriya, V.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Materials4, 864–868 (2005).
[CrossRef]

Simpson, N. B.

Smith, C. P.

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron.24, 951–962 (1992).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

Stallinga, P.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics2, 105–109 (2008).
[CrossRef]

Swartzlander, J. G. A.

Szabo, M. J.

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of laguerre-gaussian laser modes using diffractive optics,” Phys. Rev. A66, 043801 (2002).
[CrossRef]

Tabosa, J. W. R.

S. Barreiro and J. W. R. Tabosa, “Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms,” Phys. Rev. Lett.90, 133001 (2003).
[CrossRef] [PubMed]

Tamborenea, P. I.

G. F. Quinteiro and P. I. Tamborenea, “Theory of the optical absorption of light carrying orbital angular momentum by semiconductors,” EPL85, 47001 (2009).
[CrossRef]

G. F. Quinteiro and P. I. Tamborenea, “Electronic transitions in disk-shaped quantum dots induced by twisted light,” Phys. Rev. B79, 155450 (2009).
[CrossRef]

Teslow, H.

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of laguerre-gaussian laser modes using diffractive optics,” Phys. Rev. A66, 043801 (2002).
[CrossRef]

Thakur, A.

Thompson, B. C.

B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed.47, 58–77 (2008).
[CrossRef]

Timmerman, D.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics2, 105–109 (2008).
[CrossRef]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3, 305–310 (2007).
[CrossRef]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3, 305–310 (2007).
[CrossRef]

van der Veen, H.

M. Beijersbergen, L. Allen, H. van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123 – 132 (1993).
[CrossRef]

Veenstra, S. C.

X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett.5, 579–583 (2005).
[CrossRef] [PubMed]

Verbiest, T.

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A71, 055401 (2005).
[CrossRef]

Verhees, W. J. H.

X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett.5, 579–583 (2005).
[CrossRef] [PubMed]

Wegener, M. J.

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron.24, 951–962 (1992).
[CrossRef]

Wienk, M. M.

X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett.5, 579–583 (2005).
[CrossRef] [PubMed]

Woerdman, J.

M. Beijersbergen, L. Allen, H. van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123 – 132 (1993).
[CrossRef]

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

Yang, X.

X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett.5, 579–583 (2005).
[CrossRef] [PubMed]

Yang, Y.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Materials4, 864–868 (2005).
[CrossRef]

Yao, Y.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Materials4, 864–868 (2005).
[CrossRef]

Yassievich, I. N.

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics2, 105–109 (2008).
[CrossRef]

Zhang, R.

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Materials7, 435–441 (2008).
[CrossRef]

Zhao, J.

Zheng, G.

Zhou, H.

Angew. Chem. Int. Ed. (1)

B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed.47, 58–77 (2008).
[CrossRef]

Chin. Opt. Lett. (1)

EPL (1)

G. F. Quinteiro and P. I. Tamborenea, “Theory of the optical absorption of light carrying orbital angular momentum by semiconductors,” EPL85, 47001 (2009).
[CrossRef]

Geophys. Res. Lett. (1)

G. Kopp and J. L. Lean, “A new, lower value of total solar irradiance: Evidence and climate significance,” Geophys. Res. Lett.38, L01706 (2011).
[CrossRef]

J. Opt. B: Quantum Semiclass. Opt. (2)

L. Allen, “Introduction to the atoms and angular momentum of light special issue,” J. Opt. B: Quantum Semiclass. Opt.4, S1–S6 (2002).
[CrossRef]

L. C. Dávila Romero, D. L. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B: Quantum Semiclass. Opt.4, S66–S72 (2002).
[CrossRef]

Nano Lett. (1)

X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, “Nanoscale morphology of high-performance polymer solar cells,” Nano Lett.5, 579–583 (2005).
[CrossRef] [PubMed]

Nat. Materials (3)

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Materials4, 864–868 (2005).
[CrossRef]

J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nat. Materials6, 497–500 (2007).
[CrossRef]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Materials7, 435–441 (2008).
[CrossRef]

Nat. Photonics (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1, 41–48 (2007).
[CrossRef]

D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, “Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications,” Nat. Photonics2, 105–109 (2008).
[CrossRef]

Nat. Phys. (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3, 305–310 (2007).
[CrossRef]

Nature (London) (2)

M. Gratzel, “Photoelectrochemical cells,” Nature (London)414, 338–344 (2001).
[CrossRef]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature (London)394, 348–350 (1998).
[CrossRef]

Opt. Commun. (2)

M. Beijersbergen, L. Allen, H. van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123 – 132 (1993).
[CrossRef]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron.24, 951–962 (1992).
[CrossRef]

Phys. Rev. A (4)

S. A. Kennedy, M. J. Szabo, H. Teslow, J. Z. Porterfield, and E. R. I. Abraham, “Creation of laguerre-gaussian laser modes using diffractive optics,” Phys. Rev. A66, 043801 (2002).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992).
[CrossRef] [PubMed]

S. Al-Awfi and M. Babiker, “Atomic motion in hollow submicron circular cylinders,” Phys. Rev. A61, 033401 (2000).
[CrossRef]

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A71, 055401 (2005).
[CrossRef]

Phys. Rev. B (1)

G. F. Quinteiro and P. I. Tamborenea, “Electronic transitions in disk-shaped quantum dots induced by twisted light,” Phys. Rev. B79, 155450 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett.88, 053601 (2002).
[CrossRef]

S. Barreiro and J. W. R. Tabosa, “Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms,” Phys. Rev. Lett.90, 133001 (2003).
[CrossRef] [PubMed]

Other (3)

L. Allen, S. M. Barnett, and M. Padgett, Optical Angular Momentum (Institute of Physics Publishing, Bristol, 2003).
[CrossRef]

K. Helmerson and W. D. Phillips, “Rotating atoms with light,” in Twisted Photons: Applications of Light with Orbital Angular Momentum, J. J. Torres and L. Torner, eds. (WILEY-VCH, Weinheim, 2011), pp. 215–220.

R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the system setup. In the left part the normalized probability density corresponding to the initial wave function is depicted. In the right part the normalized absolute value of the vector potential A(x,y,z = 0, t = 0) of the applied field is presented. The electron has an initial momentum kx and will propagate in the x-direction during the course of time.

Fig. 2
Fig. 2

Calculated time-dependent expectation value 〈y〉(t) in the case of (a) a TL spot with the fixed phase θ = 0 and (b) the averaged effect of 10000 electrons with random phases θ ∈ [0, 2π). Once the electron wave reaches the TL spot, it begins to drift in the y-direction. This drift depends on the sign of the orbital momentum l.

Fig. 3
Fig. 3

Time-dependent difference between the side currents Ii (i=L,R) and the corresponding currents I0 generated by a freely moving electron (i.e. A = 0) in case of l = −1 is shown, whereas the situation with (a) a fixed phase θ = 0 and (b) the averaged effect of 10000 realization with random phases θ can be seen. Furthermore the averaged effect in case of light without angular momentum (i.e. l = 0) is shown.

Fig. 4
Fig. 4

Relative change of the currents on the left and right sides in dependence on the number of TL spots. The cases for (a) l = −1 and (b) l = +1 are shown.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i t ψ = [ 2 2 m * ( x 2 + y 2 ) + i e m * ( A x x + A y y ) + e 2 2 m * A 2 ] ψ ,
ψ ( t = 0 ) = N sin ( π y L 0 ) exp [ ( x x 0 ) 2 2 σ 2 ] exp ( i k x x )
A ( r ˜ , ϕ ˜ , t ) = Re { e A 0 ( 2 r ˜ w 0 ) l exp ( r ˜ 2 w 0 2 ) exp [ i ( l ϕ ˜ ω t + θ ) ] } ,
g ( 1 ) ( τ ) = E * ( t ) E ( t + τ ) E * ( t ) E ( t ) ,
I L ( t ) = 0 L 0 / 2 d y j x ( x d , y , t ) ,

Metrics