Abstract

We propose a novel method to guide THz radiation with low losses along thin layers of water. This approach is based on the coupling of evanescent surface fields at the opposite sides of the thin water layer surrounded by a dielectric material, which leads to a maximum field amplitude at the interfaces and a reduction of the energy density inside the water film. In spite of the strong absorption of water in this frequency range, calculations show that the field distribution can lead to propagation lengths of several centimeters. By means of attenuated total reflection measurements we demonstrate the coupling of incident THz radiation to the long-range surface guided modes across a layer of water with a thickness of 24 μm. This first demonstration paves the way for THz sensing in aqueous environments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.H. Yang, P.L. Richards, and Y.R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett.19, 320–323 (1971).
    [CrossRef]
  2. D.H. Auston, A.M. Glass, and A.A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett.28, 897–900 (1972).
    [CrossRef]
  3. S.L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (ed.) (CRC Press, 2008).
  4. B. Ferguson and X. Zhang, “Materials for terahertz science and technology,” Nat. Materials1, 26–33 (2002).
    [CrossRef]
  5. B. M. Fischer, M. Walther, and P.U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807–3814 (2002).
    [CrossRef] [PubMed]
  6. O. P. Cherkasova, M. M. Nazarov, A. P. Shkurinov, and V. I. Fedorov, “Terahertz spectroscopy of biological molecules,” Radiophys. and Quantum Electronics52, 518–523 (2009).
    [CrossRef]
  7. X-C Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol.473667–3677 (2002).
    [CrossRef] [PubMed]
  8. J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review,” J. Pharm. Pharmacol.59, 209–223 (2007).
    [CrossRef] [PubMed]
  9. G. Gallot, S.P. Jamison, R.W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17, 851–863 (2000).
    [CrossRef]
  10. K. Wang and D.M. Mittleman, “Metal wires for terahertz wave-guiding,” Nature432, 376–379 (2004).
    [CrossRef]
  11. J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett.29, 1617–1619 (2004).
    [CrossRef] [PubMed]
  12. J. Liu, R. Mendis, and D.M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98, 231113 (2011).
    [CrossRef]
  13. B.K. Juluri, Sz.-C.S. Lin, T.R. Walker, L. Jensen, and T.J. Huang, “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express17, 2997–3006 (2009).
    [CrossRef] [PubMed]
  14. A.I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F.J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B79, 233104 (2009).
    [CrossRef]
  15. N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
    [CrossRef]
  16. D. Martin-Cano, M.L. Nesterov, A.I. Fernández-Domínguez, F.J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18, 754–764 (2010).
    [CrossRef] [PubMed]
  17. A.W. Snyder and J.D. Love, Optical waveguide theory (Chapman and Hall, 1983).
  18. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88, 4449–4451 (2000).
    [CrossRef]
  19. P. Yeh, Optical waves in layered media (John Wiley and Sons, 1988).
  20. H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  21. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47, 1927–1930 (1981).
    [CrossRef]
  22. P. Berini, “Long range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
    [CrossRef]
  23. Y. Zhang, A. Berrier, and J. Gómez Rivas, “Long range surface plasmon polaritons at terahertz frequencies in thin semiconductor layer,” Chin. Opt. Lett.9, 110014 (2011).
    [CrossRef]
  24. L.H. Smith, M. C. Taylor, I. R. Hooper, and W.L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
    [CrossRef]
  25. G. J. Kovacs, “Surface polariton in the ATR angular spectra of a thin iron film bounded by dielectric layers,” J. Opt. Soc. Am.68, 1325–1332 (1978).
    [CrossRef]
  26. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
    [CrossRef]
  27. V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674 (2008).
  28. C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
    [CrossRef]
  29. Y. Zhang, C. Arnold, P. Offermans, and J. Gómez Rivas, “Surface wave sensors based on nanometric layers of strongly absorbing materials,” Opt. Express20, 9431–9441 (2012).
    [CrossRef] [PubMed]
  30. H.J. Liebe, G.A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Milli.12, 677682 (1991).

2012 (1)

2011 (2)

Y. Zhang, A. Berrier, and J. Gómez Rivas, “Long range surface plasmon polaritons at terahertz frequencies in thin semiconductor layer,” Chin. Opt. Lett.9, 110014 (2011).
[CrossRef]

J. Liu, R. Mendis, and D.M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98, 231113 (2011).
[CrossRef]

2010 (3)

N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
[CrossRef]

D. Martin-Cano, M.L. Nesterov, A.I. Fernández-Domínguez, F.J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18, 754–764 (2010).
[CrossRef] [PubMed]

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

2009 (4)

P. Berini, “Long range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
[CrossRef]

B.K. Juluri, Sz.-C.S. Lin, T.R. Walker, L. Jensen, and T.J. Huang, “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express17, 2997–3006 (2009).
[CrossRef] [PubMed]

A.I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F.J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B79, 233104 (2009).
[CrossRef]

O. P. Cherkasova, M. M. Nazarov, A. P. Shkurinov, and V. I. Fedorov, “Terahertz spectroscopy of biological molecules,” Radiophys. and Quantum Electronics52, 518–523 (2009).
[CrossRef]

2008 (1)

L.H. Smith, M. C. Taylor, I. R. Hooper, and W.L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

2007 (1)

J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review,” J. Pharm. Pharmacol.59, 209–223 (2007).
[CrossRef] [PubMed]

2004 (2)

2002 (3)

X-C Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol.473667–3677 (2002).
[CrossRef] [PubMed]

B. Ferguson and X. Zhang, “Materials for terahertz science and technology,” Nat. Materials1, 26–33 (2002).
[CrossRef]

B. M. Fischer, M. Walther, and P.U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807–3814 (2002).
[CrossRef] [PubMed]

2000 (2)

G. Gallot, S.P. Jamison, R.W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17, 851–863 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88, 4449–4451 (2000).
[CrossRef]

1991 (2)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

H.J. Liebe, G.A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Milli.12, 677682 (1991).

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47, 1927–1930 (1981).
[CrossRef]

1978 (1)

1972 (1)

D.H. Auston, A.M. Glass, and A.A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett.28, 897–900 (1972).
[CrossRef]

1971 (1)

K.H. Yang, P.L. Richards, and Y.R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett.19, 320–323 (1971).
[CrossRef]

1967 (1)

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674 (2008).

Arnold, C.

Y. Zhang, C. Arnold, P. Offermans, and J. Gómez Rivas, “Surface wave sensors based on nanometric layers of strongly absorbing materials,” Opt. Express20, 9431–9441 (2012).
[CrossRef] [PubMed]

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

Auston, D.H.

D.H. Auston, A.M. Glass, and A.A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett.28, 897–900 (1972).
[CrossRef]

Ballman, A.A.

D.H. Auston, A.M. Glass, and A.A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett.28, 897–900 (1972).
[CrossRef]

Barnes, W.L.

L.H. Smith, M. C. Taylor, I. R. Hooper, and W.L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

Berini, P.

Berrier, A.

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

Capasso, F.

N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
[CrossRef]

Cherkasova, O. P.

O. P. Cherkasova, M. M. Nazarov, A. P. Shkurinov, and V. I. Fedorov, “Terahertz spectroscopy of biological molecules,” Radiophys. and Quantum Electronics52, 518–523 (2009).
[CrossRef]

Davies, A.G.

N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
[CrossRef]

Dexheimer, S.L.

S.L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (ed.) (CRC Press, 2008).

Fan, J.A.

N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
[CrossRef]

Fedorov, V. I.

O. P. Cherkasova, M. M. Nazarov, A. P. Shkurinov, and V. I. Fedorov, “Terahertz spectroscopy of biological molecules,” Radiophys. and Quantum Electronics52, 518–523 (2009).
[CrossRef]

Ferguson, B.

B. Ferguson and X. Zhang, “Materials for terahertz science and technology,” Nat. Materials1, 26–33 (2002).
[CrossRef]

Fernández-Domínguez, A.I.

D. Martin-Cano, M.L. Nesterov, A.I. Fernández-Domínguez, F.J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18, 754–764 (2010).
[CrossRef] [PubMed]

A.I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F.J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B79, 233104 (2009).
[CrossRef]

Fischer, B. M.

B. M. Fischer, M. Walther, and P.U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807–3814 (2002).
[CrossRef] [PubMed]

Forcales, M.

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674 (2008).

Gallot, G.

García-Vidal, F.J.

D. Martin-Cano, M.L. Nesterov, A.I. Fernández-Domínguez, F.J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18, 754–764 (2010).
[CrossRef] [PubMed]

A.I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F.J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B79, 233104 (2009).
[CrossRef]

Giannini, V.

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674 (2008).

Glass, A.M.

D.H. Auston, A.M. Glass, and A.A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett.28, 897–900 (1972).
[CrossRef]

Gómez Rivas, J.

Y. Zhang, C. Arnold, P. Offermans, and J. Gómez Rivas, “Surface wave sensors based on nanometric layers of strongly absorbing materials,” Opt. Express20, 9431–9441 (2012).
[CrossRef] [PubMed]

Y. Zhang, A. Berrier, and J. Gómez Rivas, “Long range surface plasmon polaritons at terahertz frequencies in thin semiconductor layer,” Chin. Opt. Lett.9, 110014 (2011).
[CrossRef]

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674 (2008).

Gordon, K.C.

J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review,” J. Pharm. Pharmacol.59, 209–223 (2007).
[CrossRef] [PubMed]

Grischkowsky, D.

Hooper, I. R.

L.H. Smith, M. C. Taylor, I. R. Hooper, and W.L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

Huang, T.J.

Hufford, G.A.

H.J. Liebe, G.A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Milli.12, 677682 (1991).

Jamison, S.P.

Jensen, L.

Jepsen, P.U.

B. M. Fischer, M. Walther, and P.U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807–3814 (2002).
[CrossRef] [PubMed]

Juluri, B.K.

Kats, M.A.

N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
[CrossRef]

Khanna, S.P.

N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
[CrossRef]

Kovacs, G. J.

Li, L.

N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
[CrossRef]

Liebe, H.J.

H.J. Liebe, G.A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Milli.12, 677682 (1991).

Lin, Sz.-C.S.

Linfield, E.H.

N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
[CrossRef]

Liu, J.

J. Liu, R. Mendis, and D.M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98, 231113 (2011).
[CrossRef]

Love, J.D.

A.W. Snyder and J.D. Love, Optical waveguide theory (Chapman and Hall, 1983).

Manabe, T.

H.J. Liebe, G.A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Milli.12, 677682 (1991).

Martin-Cano, D.

Martín-Moreno, L.

D. Martin-Cano, M.L. Nesterov, A.I. Fernández-Domínguez, F.J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18, 754–764 (2010).
[CrossRef] [PubMed]

A.I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F.J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B79, 233104 (2009).
[CrossRef]

McGowan, R.W.

Mendis, R.

J. Liu, R. Mendis, and D.M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98, 231113 (2011).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88, 4449–4451 (2000).
[CrossRef]

Mittleman, D.M.

J. Liu, R. Mendis, and D.M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98, 231113 (2011).
[CrossRef]

K. Wang and D.M. Mittleman, “Metal wires for terahertz wave-guiding,” Nature432, 376–379 (2004).
[CrossRef]

Moreno, E.

D. Martin-Cano, M.L. Nesterov, A.I. Fernández-Domínguez, F.J. García-Vidal, L. Martín-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express18, 754–764 (2010).
[CrossRef] [PubMed]

A.I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F.J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B79, 233104 (2009).
[CrossRef]

Nazarov, M. M.

O. P. Cherkasova, M. M. Nazarov, A. P. Shkurinov, and V. I. Fedorov, “Terahertz spectroscopy of biological molecules,” Radiophys. and Quantum Electronics52, 518–523 (2009).
[CrossRef]

Nesterov, M.L.

Newnham, D.A.

J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review,” J. Pharm. Pharmacol.59, 209–223 (2007).
[CrossRef] [PubMed]

Offermans, P.

Pepper, M.

J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review,” J. Pharm. Pharmacol.59, 209–223 (2007).
[CrossRef] [PubMed]

Rades, T.

J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review,” J. Pharm. Pharmacol.59, 209–223 (2007).
[CrossRef] [PubMed]

Raether, H.

H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Richards, P.L.

K.H. Yang, P.L. Richards, and Y.R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett.19, 320–323 (1971).
[CrossRef]

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47, 1927–1930 (1981).
[CrossRef]

Shen, Y.R.

K.H. Yang, P.L. Richards, and Y.R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett.19, 320–323 (1971).
[CrossRef]

Shkurinov, A. P.

O. P. Cherkasova, M. M. Nazarov, A. P. Shkurinov, and V. I. Fedorov, “Terahertz spectroscopy of biological molecules,” Radiophys. and Quantum Electronics52, 518–523 (2009).
[CrossRef]

Smith, L.H.

L.H. Smith, M. C. Taylor, I. R. Hooper, and W.L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

Snyder, A.W.

A.W. Snyder and J.D. Love, Optical waveguide theory (Chapman and Hall, 1983).

Taday, P.F.

J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review,” J. Pharm. Pharmacol.59, 209–223 (2007).
[CrossRef] [PubMed]

Taylor, M. C.

L.H. Smith, M. C. Taylor, I. R. Hooper, and W.L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

Walker, T.R.

Walther, M.

B. M. Fischer, M. Walther, and P.U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807–3814 (2002).
[CrossRef] [PubMed]

Wang, K.

K. Wang and D.M. Mittleman, “Metal wires for terahertz wave-guiding,” Nature432, 376–379 (2004).
[CrossRef]

Wang, Q.J.

N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
[CrossRef]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

Yang, K.H.

K.H. Yang, P.L. Richards, and Y.R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett.19, 320–323 (1971).
[CrossRef]

Yeh, P.

P. Yeh, Optical waves in layered media (John Wiley and Sons, 1988).

Yu, N.

N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
[CrossRef]

Zeitler, J.A.

J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review,” J. Pharm. Pharmacol.59, 209–223 (2007).
[CrossRef] [PubMed]

Zhang, J.

Zhang, X.

B. Ferguson and X. Zhang, “Materials for terahertz science and technology,” Nat. Materials1, 26–33 (2002).
[CrossRef]

Zhang, X-C

X-C Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol.473667–3677 (2002).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, C. Arnold, P. Offermans, and J. Gómez Rivas, “Surface wave sensors based on nanometric layers of strongly absorbing materials,” Opt. Express20, 9431–9441 (2012).
[CrossRef] [PubMed]

Y. Zhang, A. Berrier, and J. Gómez Rivas, “Long range surface plasmon polaritons at terahertz frequencies in thin semiconductor layer,” Chin. Opt. Lett.9, 110014 (2011).
[CrossRef]

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674 (2008).

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (3)

C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

K.H. Yang, P.L. Richards, and Y.R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett.19, 320–323 (1971).
[CrossRef]

J. Liu, R. Mendis, and D.M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett.98, 231113 (2011).
[CrossRef]

Chin. Opt. Lett. (1)

Int. J. Infrared Milli. (1)

H.J. Liebe, G.A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Milli.12, 677682 (1991).

J. Appl. Phys. (1)

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88, 4449–4451 (2000).
[CrossRef]

J. Mod. Opt. (1)

L.H. Smith, M. C. Taylor, I. R. Hooper, and W.L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Pharm. Pharmacol. (1)

J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, and T. Rades, “Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting - a review,” J. Pharm. Pharmacol.59, 209–223 (2007).
[CrossRef] [PubMed]

Nat. Materials (1)

B. Ferguson and X. Zhang, “Materials for terahertz science and technology,” Nat. Materials1, 26–33 (2002).
[CrossRef]

Nature (1)

K. Wang and D.M. Mittleman, “Metal wires for terahertz wave-guiding,” Nature432, 376–379 (2004).
[CrossRef]

Nature Mater. (1)

N. Yu, Q.J. Wang, M.A. Kats, J.A. Fan, S.P. Khanna, L. Li, A.G. Davies, E.H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater.9, 730–735 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Med. Biol. (2)

X-C Zhang, “Terahertz wave imaging: horizons and hurdles,” Phys. Med. Biol.473667–3677 (2002).
[CrossRef] [PubMed]

B. M. Fischer, M. Walther, and P.U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol.47, 3807–3814 (2002).
[CrossRef] [PubMed]

Phys. Rev. B (2)

A.I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F.J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B79, 233104 (2009).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

Phys. Rev. Lett. (2)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47, 1927–1930 (1981).
[CrossRef]

D.H. Auston, A.M. Glass, and A.A. Ballman, “Optical rectification by impurities in polar crystals,” Phys. Rev. Lett.28, 897–900 (1972).
[CrossRef]

Radiophys. and Quantum Electronics (1)

O. P. Cherkasova, M. M. Nazarov, A. P. Shkurinov, and V. I. Fedorov, “Terahertz spectroscopy of biological molecules,” Radiophys. and Quantum Electronics52, 518–523 (2009).
[CrossRef]

Other (4)

S.L. Dexheimer, Terahertz Spectroscopy: Principles and Applications (ed.) (CRC Press, 2008).

A.W. Snyder and J.D. Love, Optical waveguide theory (Chapman and Hall, 1983).

P. Yeh, Optical waves in layered media (John Wiley and Sons, 1988).

H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1:
Fig. 1:

(a) Schematic (not to scale) of a triple layer system consisting of an absorbing layer with thickness d homogeneously surrounded by low loss dielectrics with the permittivities ε1 and ε3. (b) Real and imaginary components of the permittivity of water at 21 °C.

Fig. 2:
Fig. 2:

(a) Calculated intensity propagation lengths as a function of frequency of long-range guided modes along layers of water (T = 21°C) with a thickness d = 6 μm, 12 μm and 24 μm, surrounded by a lossless dielectric with a permittivity of 2.36. The dashed line represents the absorption length of THz radiation in water. (b) Intensity propagation length and decay length into the surrounding dielectric of long-range guided modes, normalized to the wavelength λ = 625 μm, as a function of the thickness of the water layer for a lossy dielectric with ε2 = 4.8 + 3.6i.

Fig. 3:
Fig. 3:

(a) Photograph of the triple layer structure consisting of 3 mm thick TOPAS substrate (1), 250 μm Zeonor cover slide (2), SU-8 photoresist (3), micropatterned markers for prism positioning (4), 2.4 × 4 cm2 water compartments indicated by the black dotted boundaries (5) and water filling hole (6). (b) Schematic representation of the setup used to couple free-space THz radiation to long-range guided modes in thin layers of water.

Fig. 4:
Fig. 4:

Calculation of the field amplitudes, normalized by the incident fields, in the prism (I) and the triple layer (Zeonor top layer (II), water layer (III) and TOPAS substrate (IV)). A p-polarized plane wave with a vacuum wavelength of 625 μm is incident from the prism exciting a long-range mode guided in the water layer. (a) The electric field component of this mode along the propagation direction, Ex, (b) Ez field component along the direction normal to the water layer, and (c) is the magnetic field component Hy. The guiding structure consists of a triple layer formed by a 250 μm thick Zeonor cover slide with εZeonor = 2.36 + 0.0154i, a 24 μm thick water layer with εwater = 4.8 + 3.6i, and a semi-infinite TOPAS substrate slab with εTOPAS = 2.36 + 0.0015i.

Fig. 5:
Fig. 5:

The THz-TDS attenuated total reflection setup with pump beam for THz generation (1), THz emitter (Au electrodes on GaAs) (2), collimated THz beam (3), Au mirror fixed to rotary stage which is mounted on linear stage (4), prism placed on top of the water containing triple layer structure (5), probe beam for THz detection (6), wavelength dependent reflecting Indium Tin Oxide (ITO) (7) and electrooptic detection unit (8).

Fig. 6:
Fig. 6:

Representative specular reflection measurement at an angle of 26.8° and reference measurement at 28.5°. (a) Transients, (b) FFT spectra of the transients, (a) and (b) are normalized to the maximum reflection of the reference. (c) Reflectivity calculated from (b). The black circles are the reflectivity data points from the FFT of the non-offset corrected and non-zero padded transients in (a) representing the frequency interval corresponding to the duration in time domain.

Fig. 7:
Fig. 7:

Attenuated total reflectivity of incident THz radiation in the case of (a) p-polarized waves incident on a 3 mm homogeneous single TOPAS slab / Si prism interface (angle resolution θr = 0.05°) and (b) s-polarized waves at a quasi-homogeneous triple layer structure consisting of 250 μm Zeonor cover slide / 24 μm liquid layer / 3 mm TOPAS substrate slab (filled with water) (θr = 0.03°). The critical angle (black dashed) line is slightly tilted due to the dispersion of the dielectric materials.

Fig. 8:
Fig. 8:

Attenuated total reflectivity of p-polarized incident THz radiation and coupling to a long-range guided mode (indicated by a white arrow) in a triple layer structure consisting of 250 μm Zeonor cover slide / 24 μm water layer / 3 mm TOPAS substrate slab, (a) experimental data with angle resolution θr = 0.03° and (b) calculation of the specular reflectivity.

Fig. 9:
Fig. 9:

Attenuated total reflectivity of p-polarized THz radiation incident on a triple layer structure with an ethanol thin layer. The structure consists of 250 μm Zeonor cover slide / 24 μm ethanol / 3 mm TOPAS substrate slab, (a) experimental data with angle resolution θr = 0.03° and (b) transfer matrix calculation of the specular reflectivity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

e 2 i β z 2 d = ( β z 2 ε 2 + β z 1 ε 1 β z 2 ε 2 β z 1 ε 1 ) ( β z 2 ε 2 + β z 3 ε 3 β z 2 ε 2 β z 3 ε 3 ) ,
tanh ( i β z 2 d / 2 ) = ε 2 β z 1 ε 1 β z 2 ,
tanh ( i β z 2 d / 2 ) = ε 1 β z 2 ε 2 β z 1 .

Metrics