Abstract

The light emission produced near the surface of fused silica following laser-induced breakdown on the exit surface was spatially and spectrally resolved. This signal is in part generated by ejected particles while traveling outside the hot ionized region. The thermal emission produced by the particles can be separated from the plasma emission near the surface and its spectral characteristics provide information on the temperature of the particles after ejection from the surface. Assuming the emission is thermal in origin, data suggest an initial average temperature on the order of at least 0.5 eV.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
    [CrossRef]
  2. S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys.82(5), 2140–2146 (1997).
    [CrossRef]
  3. J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys.83(2), 691–696 (1998).
    [CrossRef]
  4. H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B54(11), 1607–1624 (1999).
    [CrossRef]
  5. M. Milán and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta B56(3), 275–288 (2001).
    [CrossRef]
  6. M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol.12(2), 185–198 (2003).
    [CrossRef]
  7. C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B63(9), 893–916 (2008).
    [CrossRef]
  8. J. P. Singh and S. N. Thakur, eds., in Laser-Induced Breakdown Spectroscopy (Elsevier, Oxford, 2007).
  9. P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B63(2), 293–304 (2008).
    [CrossRef]
  10. J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem.74(21), 5450–5454 (2002).
    [CrossRef] [PubMed]
  11. V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem.78(5), 1509–1514 (2006).
    [CrossRef] [PubMed]
  12. G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem.59(24), 2861–2872 (1987).
    [CrossRef]
  13. G. A. Lithgow and S. G. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B60(7-8), 1060–1069 (2005).
    [CrossRef]
  14. I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B59(4), 401–418 (2004).
    [CrossRef]
  15. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
    [CrossRef]
  16. R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett.98(5), 051901 (2011).
    [CrossRef]
  17. R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).
    [CrossRef]
  18. G. Koren and U. P. Oppenheim, “Laser ablation of polymers in pressurized gas ambients,” Appl. Phys. B42(1), 41–43 (1987).
    [CrossRef]
  19. A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett.61(23), 2784–2786 (1992).
    [CrossRef]
  20. F. Wagner and P. Hoffmann, “Structure formation in excimer laser ablation of stretched poly(ethylene therepthalate) (PET): the influence of scanning ablation,” Appl. Phys., A Mater. Sci. Process.69(7), S841–S844 (1999).
    [CrossRef]
  21. J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett.73(19), 2630–2633 (1994).
    [CrossRef] [PubMed]
  22. S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys.107(3), 033107 (2010).
    [CrossRef]
  23. V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys.101(7), 073301 (2007).
    [CrossRef]
  24. A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
    [CrossRef]
  25. S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express20(2), 1575–1587 (2012).
    [CrossRef] [PubMed]
  26. S. I. Anisimov and V. A. Khokhlov, Instabilities in Laser-Matter Interaction (CRC Press, 1999).
  27. H. L. Schick, “Thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev.60(4), 331–362 (1960).
    [CrossRef]
  28. S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys.111(9), 093113 (2012).
    [CrossRef]
  29. R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids5(2), 123–175 (1970).
    [CrossRef]
  30. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys.106(10), 103106 (2009).
    [CrossRef]
  31. F. Armero and J. C. Simo, “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems,” Int. J. Numer. Methods Eng.35(4), 737–766 (1992).
    [CrossRef]
  32. B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett.106(2), 027401 (2011).
    [CrossRef] [PubMed]
  33. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
    [CrossRef] [PubMed]

2012

S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys.111(9), 093113 (2012).
[CrossRef]

S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express20(2), 1575–1587 (2012).
[CrossRef] [PubMed]

2011

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett.106(2), 027401 (2011).
[CrossRef] [PubMed]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett.98(5), 051901 (2011).
[CrossRef]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).
[CrossRef]

2010

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys.107(3), 033107 (2010).
[CrossRef]

2009

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys.106(10), 103106 (2009).
[CrossRef]

2008

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B63(9), 893–916 (2008).
[CrossRef]

P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B63(2), 293–304 (2008).
[CrossRef]

2007

V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys.101(7), 073301 (2007).
[CrossRef]

2006

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem.78(5), 1509–1514 (2006).
[CrossRef] [PubMed]

2005

G. A. Lithgow and S. G. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B60(7-8), 1060–1069 (2005).
[CrossRef]

2004

I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B59(4), 401–418 (2004).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

2003

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol.12(2), 185–198 (2003).
[CrossRef]

2002

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem.74(21), 5450–5454 (2002).
[CrossRef] [PubMed]

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

2001

M. Milán and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta B56(3), 275–288 (2001).
[CrossRef]

1999

H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B54(11), 1607–1624 (1999).
[CrossRef]

F. Wagner and P. Hoffmann, “Structure formation in excimer laser ablation of stretched poly(ethylene therepthalate) (PET): the influence of scanning ablation,” Appl. Phys., A Mater. Sci. Process.69(7), S841–S844 (1999).
[CrossRef]

1998

J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys.83(2), 691–696 (1998).
[CrossRef]

1997

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys.82(5), 2140–2146 (1997).
[CrossRef]

1994

J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett.73(19), 2630–2633 (1994).
[CrossRef] [PubMed]

1992

F. Armero and J. C. Simo, “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems,” Int. J. Numer. Methods Eng.35(4), 737–766 (1992).
[CrossRef]

A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett.61(23), 2784–2786 (1992).
[CrossRef]

1987

G. Koren and U. P. Oppenheim, “Laser ablation of polymers in pressurized gas ambients,” Appl. Phys. B42(1), 41–43 (1987).
[CrossRef]

G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem.59(24), 2861–2872 (1987).
[CrossRef]

1970

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids5(2), 123–175 (1970).
[CrossRef]

1960

H. L. Schick, “Thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev.60(4), 331–362 (1960).
[CrossRef]

Åberg, D.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett.106(2), 027401 (2011).
[CrossRef] [PubMed]

Aguilera, J. A.

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B63(9), 893–916 (2008).
[CrossRef]

Amoruso, S.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
[CrossRef]

Aragón, C.

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B63(9), 893–916 (2008).
[CrossRef]

Armero, F.

F. Armero and J. C. Simo, “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems,” Int. J. Numer. Methods Eng.35(4), 737–766 (1992).
[CrossRef]

Ausanio, G.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
[CrossRef]

Beigman, I.

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

Biesiada, T.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys.82(5), 2140–2146 (1997).
[CrossRef]

Bisson, S. E.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys.106(10), 103106 (2009).
[CrossRef]

Borodin, D.

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

Boulmer-Leborgne, C.

J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys.83(2), 691–696 (1998).
[CrossRef]

Braren, B.

A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett.61(23), 2784–2786 (1992).
[CrossRef]

Brückner, R.

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids5(2), 123–175 (1970).
[CrossRef]

Bruzzese, R.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
[CrossRef]

Buckley, S. G.

G. A. Lithgow and S. G. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B60(7-8), 1060–1069 (2005).
[CrossRef]

Bude, J.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett.106(2), 027401 (2011).
[CrossRef] [PubMed]

Burnham, A. K.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Carranza, J. E.

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem.74(21), 5450–5454 (2002).
[CrossRef] [PubMed]

Cooke, D. J.

Dalyander, P. S.

P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B63(2), 293–304 (2008).
[CrossRef]

Demos, S.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Demos, S. G.

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett.98(5), 051901 (2011).
[CrossRef]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Dickinson, J. T.

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys.107(3), 033107 (2010).
[CrossRef]

J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett.73(19), 2630–2633 (1994).
[CrossRef] [PubMed]

Doering, D. L.

J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett.73(19), 2630–2633 (1994).
[CrossRef] [PubMed]

Draggoo, V. G.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys.106(10), 103106 (2009).
[CrossRef]

Elaksher, F. F.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol.12(2), 185–198 (2003).
[CrossRef]

Elhadj, S.

S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys.111(9), 093113 (2012).
[CrossRef]

S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express20(2), 1575–1587 (2012).
[CrossRef] [PubMed]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys.106(10), 103106 (2009).
[CrossRef]

Erhart, P.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett.106(2), 027401 (2011).
[CrossRef] [PubMed]

Feit, M.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Feit, M. D.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Fluss, M.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Gamal, Y. E.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol.12(2), 185–198 (2003).
[CrossRef]

George, S. R.

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys.107(3), 033107 (2010).
[CrossRef]

Gornushkin, I. B.

P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B63(2), 293–304 (2008).
[CrossRef]

I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B59(4), 401–418 (2004).
[CrossRef]

Hackel, L.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Hafez, M. A.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol.12(2), 185–198 (2003).
[CrossRef]

Hahn, D. W.

P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B63(2), 293–304 (2008).
[CrossRef]

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem.78(5), 1509–1514 (2006).
[CrossRef] [PubMed]

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem.74(21), 5450–5454 (2002).
[CrossRef] [PubMed]

Harilal, S. S.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys.82(5), 2140–2146 (1997).
[CrossRef]

Hermann, J.

J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys.83(2), 691–696 (1998).
[CrossRef]

Hieftje, G. M.

G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem.59(24), 2861–2872 (1987).
[CrossRef]

Hoffmann, P.

F. Wagner and P. Hoffmann, “Structure formation in excimer laser ablation of stretched poly(ethylene therepthalate) (PET): the influence of scanning ablation,” Appl. Phys., A Mater. Sci. Process.69(7), S841–S844 (1999).
[CrossRef]

Hohreiter, V.

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem.78(5), 1509–1514 (2006).
[CrossRef] [PubMed]

Hong, D.

J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys.83(2), 691–696 (1998).
[CrossRef]

Hrubesh, L.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Huber, A.

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

Iannotti, V.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
[CrossRef]

Issac, R. C.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys.82(5), 2140–2146 (1997).
[CrossRef]

Kazakov, A. Ya.

I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B59(4), 401–418 (2004).
[CrossRef]

Kelly, R.

A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett.61(23), 2784–2786 (1992).
[CrossRef]

Key, M.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Khedr, M. A.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol.12(2), 185–198 (2003).
[CrossRef]

Koren, G.

G. Koren and U. P. Oppenheim, “Laser ablation of polymers in pressurized gas ambients,” Appl. Phys. B42(1), 41–43 (1987).
[CrossRef]

Langford, S. C.

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys.107(3), 033107 (2010).
[CrossRef]

J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett.73(19), 2630–2633 (1994).
[CrossRef] [PubMed]

Lanotte, L.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
[CrossRef]

Laserna, J. J.

M. Milán and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta B56(3), 275–288 (2001).
[CrossRef]

Leraas, J. A.

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys.107(3), 033107 (2010).
[CrossRef]

Lithgow, G. A.

G. A. Lithgow and S. G. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B60(7-8), 1060–1069 (2005).
[CrossRef]

Liu, H. C.

H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B54(11), 1607–1624 (1999).
[CrossRef]

Mao, X. L.

H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B54(11), 1607–1624 (1999).
[CrossRef]

Matthews, M. J.

S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express20(2), 1575–1587 (2012).
[CrossRef] [PubMed]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys.106(10), 103106 (2009).
[CrossRef]

Menapace, J.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Mertens, P.

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

Milán, M.

M. Milán and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta B56(3), 275–288 (2001).
[CrossRef]

Miller, R. M.

G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem.59(24), 2861–2872 (1987).
[CrossRef]

Miotello, A.

A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett.61(23), 2784–2786 (1992).
[CrossRef]

Monterrosa, A. M.

S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys.111(9), 093113 (2012).
[CrossRef]

Nampoori, V. P. N.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys.82(5), 2140–2146 (1997).
[CrossRef]

Narayanan, V.

V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys.101(7), 073301 (2007).
[CrossRef]

Negres, R. A.

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).
[CrossRef]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett.98(5), 051901 (2011).
[CrossRef]

Omenetto, N.

I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B59(4), 401–418 (2004).
[CrossRef]

Oppenheim, U. P.

G. Koren and U. P. Oppenheim, “Laser ablation of polymers in pressurized gas ambients,” Appl. Phys. B42(1), 41–43 (1987).
[CrossRef]

Otis, C. E.

A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett.61(23), 2784–2786 (1992).
[CrossRef]

Pak, Y.

G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem.59(24), 2861–2872 (1987).
[CrossRef]

Pandey, P. K.

V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys.101(7), 073301 (2007).
[CrossRef]

Parham, T.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Penetrante, B.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Philipps, V.

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

Pospieszczyk, A.

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

Qiu, S. R.

S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys.111(9), 093113 (2012).
[CrossRef]

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Raman, R. N.

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett.98(5), 051901 (2011).
[CrossRef]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).
[CrossRef]

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

Runkel, M.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Russo, R. E.

H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B54(11), 1607–1624 (1999).
[CrossRef]

Sadigh, B.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett.106(2), 027401 (2011).
[CrossRef] [PubMed]

Samm, U.

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

Schick, H. L.

H. L. Schick, “Thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev.60(4), 331–362 (1960).
[CrossRef]

Schweer, B.

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

Schwegler, E.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett.106(2), 027401 (2011).
[CrossRef] [PubMed]

Sergienko, G.

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

Shin, J. J.

J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett.73(19), 2630–2633 (1994).
[CrossRef] [PubMed]

Shukla, N.

V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys.101(7), 073301 (2007).
[CrossRef]

Simo, J. C.

F. Armero and J. C. Simo, “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems,” Int. J. Numer. Methods Eng.35(4), 737–766 (1992).
[CrossRef]

Singh, V.

V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys.101(7), 073301 (2007).
[CrossRef]

Smith, B. W.

I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B59(4), 401–418 (2004).
[CrossRef]

Spinelli, N.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
[CrossRef]

Stolz, C. J.

S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys.111(9), 093113 (2012).
[CrossRef]

Thareja, R. K.

V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys.101(7), 073301 (2007).
[CrossRef]

Trave, A.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett.106(2), 027401 (2011).
[CrossRef] [PubMed]

Vainshtein, L.

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

Vallabhan, C. P. G.

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys.82(5), 2140–2146 (1997).
[CrossRef]

Velotta, R.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
[CrossRef]

Vitiello, M.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
[CrossRef]

Wagner, F.

F. Wagner and P. Hoffmann, “Structure formation in excimer laser ablation of stretched poly(ethylene therepthalate) (PET): the influence of scanning ablation,” Appl. Phys., A Mater. Sci. Process.69(7), S841–S844 (1999).
[CrossRef]

Wang, X.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
[CrossRef]

Wegner, P.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Whitman, P.

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Winefordner, J. D.

I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B59(4), 401–418 (2004).
[CrossRef]

Wittig, E. P.

G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem.59(24), 2861–2872 (1987).
[CrossRef]

Yang, S. T.

S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express20(2), 1575–1587 (2012).
[CrossRef] [PubMed]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys.106(10), 103106 (2009).
[CrossRef]

Yoo, J. H.

H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B54(11), 1607–1624 (1999).
[CrossRef]

Anal. Chem.

J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem.74(21), 5450–5454 (2002).
[CrossRef] [PubMed]

V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem.78(5), 1509–1514 (2006).
[CrossRef] [PubMed]

G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem.59(24), 2861–2872 (1987).
[CrossRef]

Appl. Phys. B

G. Koren and U. P. Oppenheim, “Laser ablation of polymers in pressurized gas ambients,” Appl. Phys. B42(1), 41–43 (1987).
[CrossRef]

Appl. Phys. Lett.

A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett.61(23), 2784–2786 (1992).
[CrossRef]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett.84(22), 4502–4505 (2004).
[CrossRef]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett.98(5), 051901 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

F. Wagner and P. Hoffmann, “Structure formation in excimer laser ablation of stretched poly(ethylene therepthalate) (PET): the influence of scanning ablation,” Appl. Phys., A Mater. Sci. Process.69(7), S841–S844 (1999).
[CrossRef]

Chem. Rev.

H. L. Schick, “Thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev.60(4), 331–362 (1960).
[CrossRef]

Int. J. Numer. Methods Eng.

F. Armero and J. C. Simo, “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems,” Int. J. Numer. Methods Eng.35(4), 737–766 (1992).
[CrossRef]

J. Appl. Phys.

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys.106(10), 103106 (2009).
[CrossRef]

S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys.111(9), 093113 (2012).
[CrossRef]

S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys.107(3), 033107 (2010).
[CrossRef]

V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys.101(7), 073301 (2007).
[CrossRef]

S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys.82(5), 2140–2146 (1997).
[CrossRef]

J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys.83(2), 691–696 (1998).
[CrossRef]

J. Non-Cryst. Solids

R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids5(2), 123–175 (1970).
[CrossRef]

Opt. Eng.

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett.106(2), 027401 (2011).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett.73(19), 2630–2633 (1994).
[CrossRef] [PubMed]

Plasma Phys. Contr. Fusion

A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion45(2), 89–103 (2003).
[CrossRef]

Plasma Sources Sci. Technol.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol.12(2), 185–198 (2003).
[CrossRef]

Proc. SPIE

A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE4679, 173–185 (2002).
[CrossRef]

Spectrochim. Acta B

P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B63(2), 293–304 (2008).
[CrossRef]

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B63(9), 893–916 (2008).
[CrossRef]

H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B54(11), 1607–1624 (1999).
[CrossRef]

M. Milán and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta B56(3), 275–288 (2001).
[CrossRef]

G. A. Lithgow and S. G. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B60(7-8), 1060–1069 (2005).
[CrossRef]

I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B59(4), 401–418 (2004).
[CrossRef]

Other

J. P. Singh and S. N. Thakur, eds., in Laser-Induced Breakdown Spectroscopy (Elsevier, Oxford, 2007).

S. I. Anisimov and V. A. Khokhlov, Instabilities in Laser-Matter Interaction (CRC Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of experimental arrangements. (a) Time-resolved and time-integrated imaging setup. L = focusing lens, M = mirror, PBS = polarizing beam-splitter. (b) Spatially-resolved emission spectroscopy setup.

Fig. 2
Fig. 2

Images of damage events on the exit surface (located on the right hand side) of fused silica. (a) Shadowgraphy images taken at 1 µs (a1) and 20 µs (a2) delays, respectively. Time-integrated (b) broadband emission and (c) 670-nm light scattering images acquired during a single event (log intensity scale). All images have the same spatial scale.

Fig. 3
Fig. 3

(a) Normalized spectra from various fibers integrated over 2400 ablation events. (b) Peak intensity and corresponding position (in wavelength) of measured spectra for all fibers.

Fig. 4
Fig. 4

Time-resolved images capturing the spatial and size distributions of ejected particles at a distance between 3 - 4.5 mm from the surface at (a) 4.5 µs, (b) 10 µs, (c) 20 µs, and (d) 50 µs delays. These delays capture ejected particles having different average speeds as denoted in the lower part of each image. The inset to the left in (a) depicts a magnified image of a small particle, while the inset to the right depicts a magnified image of a segment of the shock wave. More details are provided in the text.

Fig. 5
Fig. 5

(a) Time-integrated light scattering images under 670-nm CW laser illumination acquired during a single event (linear intensity scale). (b) Trajectories of particle paths exhibiting change in propagation obtained from 7 different images, with each color representing a different image.

Fig. 6
Fig. 6

Modeling of the temperature during cooling for particles with initial radius of a = 2.5 µm and a = 10 µm and initial temperatures of 6000 K assuming propagation in vacuum or air.

Fig. 7
Fig. 7

Simulation results of the temperature at the surface and the center of particles during cooling with initial radius of a = 2.5 µm, 10 µm, and 25 µm assuming initial temperature of 6000 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 3 ρ C p da ( t ) 3 T( t ) dt =a ( t ) 2 [ ( σ( T ( t ) 4 T s 4 )+ V m E h a Δ T a ( t ) ) ] 1 3 ρ da ( t ) 3 dt =a ( t ) 2 V m
ρ C p (T) T t [k(T)T]=Q

Metrics