S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express 20(2), 1575–1587 (2012).
[Crossref]
[PubMed]
S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys. 111(9), 093113 (2012).
[Crossref]
B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref]
[PubMed]
R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98(5), 051901 (2011).
[Crossref]
R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]
S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys. 107(3), 033107 (2010).
[Crossref]
S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]
C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B 63(9), 893–916 (2008).
[Crossref]
P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B 63(2), 293–304 (2008).
[Crossref]
V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys. 101(7), 073301 (2007).
[Crossref]
V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78(5), 1509–1514 (2006).
[Crossref]
[PubMed]
G. A. Lithgow and S. G. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B 60(7-8), 1060–1069 (2005).
[Crossref]
I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B 59(4), 401–418 (2004).
[Crossref]
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4505 (2004).
[Crossref]
C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref]
[PubMed]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]
J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74(21), 5450–5454 (2002).
[Crossref]
[PubMed]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
M. Milán and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta B 56(3), 275–288 (2001).
[Crossref]
H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B 54(11), 1607–1624 (1999).
[Crossref]
F. Wagner and P. Hoffmann, “Structure formation in excimer laser ablation of stretched poly(ethylene therepthalate) (PET): the influence of scanning ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S841–S844 (1999).
[Crossref]
J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys. 83(2), 691–696 (1998).
[Crossref]
S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82(5), 2140–2146 (1997).
[Crossref]
J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett. 73(19), 2630–2633 (1994).
[Crossref]
[PubMed]
F. Armero and J. C. Simo, “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems,” Int. J. Numer. Methods Eng. 35(4), 737–766 (1992).
[Crossref]
A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett. 61(23), 2784–2786 (1992).
[Crossref]
G. Koren and U. P. Oppenheim, “Laser ablation of polymers in pressurized gas ambients,” Appl. Phys. B 42(1), 41–43 (1987).
[Crossref]
G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem. 59(24), 2861–2872 (1987).
[Crossref]
R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5(2), 123–175 (1970).
[Crossref]
H. L. Schick, “Thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960).
[Crossref]
B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref]
[PubMed]
C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B 63(9), 893–916 (2008).
[Crossref]
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4505 (2004).
[Crossref]
C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B 63(9), 893–916 (2008).
[Crossref]
F. Armero and J. C. Simo, “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems,” Int. J. Numer. Methods Eng. 35(4), 737–766 (1992).
[Crossref]
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4505 (2004).
[Crossref]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82(5), 2140–2146 (1997).
[Crossref]
S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys. 83(2), 691–696 (1998).
[Crossref]
A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett. 61(23), 2784–2786 (1992).
[Crossref]
R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5(2), 123–175 (1970).
[Crossref]
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4505 (2004).
[Crossref]
G. A. Lithgow and S. G. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B 60(7-8), 1060–1069 (2005).
[Crossref]
B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref]
[PubMed]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref]
[PubMed]
J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74(21), 5450–5454 (2002).
[Crossref]
[PubMed]
P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B 63(2), 293–304 (2008).
[Crossref]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]
R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98(5), 051901 (2011).
[Crossref]
C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref]
[PubMed]
S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys. 107(3), 033107 (2010).
[Crossref]
J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett. 73(19), 2630–2633 (1994).
[Crossref]
[PubMed]
J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett. 73(19), 2630–2633 (1994).
[Crossref]
[PubMed]
S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]
M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]
S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys. 111(9), 093113 (2012).
[Crossref]
S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express 20(2), 1575–1587 (2012).
[Crossref]
[PubMed]
S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]
B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref]
[PubMed]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref]
[PubMed]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]
S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys. 107(3), 033107 (2010).
[Crossref]
P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B 63(2), 293–304 (2008).
[Crossref]
I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B 59(4), 401–418 (2004).
[Crossref]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]
P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B 63(2), 293–304 (2008).
[Crossref]
V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78(5), 1509–1514 (2006).
[Crossref]
[PubMed]
J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74(21), 5450–5454 (2002).
[Crossref]
[PubMed]
S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82(5), 2140–2146 (1997).
[Crossref]
J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys. 83(2), 691–696 (1998).
[Crossref]
G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem. 59(24), 2861–2872 (1987).
[Crossref]
F. Wagner and P. Hoffmann, “Structure formation in excimer laser ablation of stretched poly(ethylene therepthalate) (PET): the influence of scanning ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S841–S844 (1999).
[Crossref]
V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78(5), 1509–1514 (2006).
[Crossref]
[PubMed]
J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys. 83(2), 691–696 (1998).
[Crossref]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4505 (2004).
[Crossref]
S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82(5), 2140–2146 (1997).
[Crossref]
I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B 59(4), 401–418 (2004).
[Crossref]
A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett. 61(23), 2784–2786 (1992).
[Crossref]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]
G. Koren and U. P. Oppenheim, “Laser ablation of polymers in pressurized gas ambients,” Appl. Phys. B 42(1), 41–43 (1987).
[Crossref]
S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys. 107(3), 033107 (2010).
[Crossref]
J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett. 73(19), 2630–2633 (1994).
[Crossref]
[PubMed]
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4505 (2004).
[Crossref]
M. Milán and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta B 56(3), 275–288 (2001).
[Crossref]
S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys. 107(3), 033107 (2010).
[Crossref]
G. A. Lithgow and S. G. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B 60(7-8), 1060–1069 (2005).
[Crossref]
H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B 54(11), 1607–1624 (1999).
[Crossref]
H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B 54(11), 1607–1624 (1999).
[Crossref]
S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express 20(2), 1575–1587 (2012).
[Crossref]
[PubMed]
S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
M. Milán and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta B 56(3), 275–288 (2001).
[Crossref]
G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem. 59(24), 2861–2872 (1987).
[Crossref]
A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett. 61(23), 2784–2786 (1992).
[Crossref]
S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys. 111(9), 093113 (2012).
[Crossref]
S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82(5), 2140–2146 (1997).
[Crossref]
V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys. 101(7), 073301 (2007).
[Crossref]
R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98(5), 051901 (2011).
[Crossref]
R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]
I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B 59(4), 401–418 (2004).
[Crossref]
G. Koren and U. P. Oppenheim, “Laser ablation of polymers in pressurized gas ambients,” Appl. Phys. B 42(1), 41–43 (1987).
[Crossref]
A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett. 61(23), 2784–2786 (1992).
[Crossref]
G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem. 59(24), 2861–2872 (1987).
[Crossref]
V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys. 101(7), 073301 (2007).
[Crossref]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys. 111(9), 093113 (2012).
[Crossref]
C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref]
[PubMed]
R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]
R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98(5), 051901 (2011).
[Crossref]
C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref]
[PubMed]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B 54(11), 1607–1624 (1999).
[Crossref]
B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref]
[PubMed]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
H. L. Schick, “Thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960).
[Crossref]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref]
[PubMed]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett. 73(19), 2630–2633 (1994).
[Crossref]
[PubMed]
V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys. 101(7), 073301 (2007).
[Crossref]
F. Armero and J. C. Simo, “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems,” Int. J. Numer. Methods Eng. 35(4), 737–766 (1992).
[Crossref]
V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys. 101(7), 073301 (2007).
[Crossref]
I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B 59(4), 401–418 (2004).
[Crossref]
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4505 (2004).
[Crossref]
S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys. 111(9), 093113 (2012).
[Crossref]
V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys. 101(7), 073301 (2007).
[Crossref]
B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref]
[PubMed]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82(5), 2140–2146 (1997).
[Crossref]
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4505 (2004).
[Crossref]
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4505 (2004).
[Crossref]
F. Wagner and P. Hoffmann, “Structure formation in excimer laser ablation of stretched poly(ethylene therepthalate) (PET): the influence of scanning ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S841–S844 (1999).
[Crossref]
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4505 (2004).
[Crossref]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B 59(4), 401–418 (2004).
[Crossref]
G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem. 59(24), 2861–2872 (1987).
[Crossref]
S. Elhadj, M. J. Matthews, S. T. Yang, and D. J. Cooke, “Evaporation kinetics of laser heated silica in reactive and inert gases based on near-equilibrium dynamics,” Opt. Express 20(2), 1575–1587 (2012).
[Crossref]
[PubMed]
S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]
H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B 54(11), 1607–1624 (1999).
[Crossref]
J. E. Carranza and D. W. Hahn, “Assessment of the upper particle size limit for quantitative analysis of aerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 74(21), 5450–5454 (2002).
[Crossref]
[PubMed]
V. Hohreiter and D. W. Hahn, “Plasma-particle interactions in a laser-induced plasma: implications for laser-induced breakdown spectroscopy,” Anal. Chem. 78(5), 1509–1514 (2006).
[Crossref]
[PubMed]
G. M. Hieftje, R. M. Miller, Y. Pak, and E. P. Wittig, “Theoretical examination of solute particle vaporization in analytical atomic spectrometry,” Anal. Chem. 59(24), 2861–2872 (1987).
[Crossref]
G. Koren and U. P. Oppenheim, “Laser ablation of polymers in pressurized gas ambients,” Appl. Phys. B 42(1), 41–43 (1987).
[Crossref]
A. Miotello, R. Kelly, B. Braren, and C. E. Otis, “Novel geometric effects observed in debris when polymers are laser sputtered,” Appl. Phys. Lett. 61(23), 2784–2786 (1992).
[Crossref]
S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4505 (2004).
[Crossref]
R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during breakdown in fused silica by nanosecond laser pulses,” Appl. Phys. Lett. 98(5), 051901 (2011).
[Crossref]
F. Wagner and P. Hoffmann, “Structure formation in excimer laser ablation of stretched poly(ethylene therepthalate) (PET): the influence of scanning ablation,” Appl. Phys., A Mater. Sci. Process. 69(7), S841–S844 (1999).
[Crossref]
H. L. Schick, “Thermodynamic analysis of the high temperature vaporization properties of silica,” Chem. Rev. 60(4), 331–362 (1960).
[Crossref]
F. Armero and J. C. Simo, “A new unconditionally stable fractional step method for nonlinear coupled thermomechanical problems,” Int. J. Numer. Methods Eng. 35(4), 737–766 (1992).
[Crossref]
S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: in situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[Crossref]
S. Elhadj, S. R. Qiu, A. M. Monterrosa, and C. J. Stolz, “Heating dynamics of CO2-laser irradiated silica particles with evaporative shrinking: measurements and modeling,” J. Appl. Phys. 111(9), 093113 (2012).
[Crossref]
S. R. George, J. A. Leraas, S. C. Langford, and J. T. Dickinson, “Interaction of vacuum ultraviolet excimer laser radiation with fused silica. I. Positive ion emission,” J. Appl. Phys. 107(3), 033107 (2010).
[Crossref]
V. Narayanan, V. Singh, P. K. Pandey, N. Shukla, and R. K. Thareja, “Increasing lifetime of the plasma channel formed in air using picoseconds and nanosecond laser pulses,” J. Appl. Phys. 101(7), 073301 (2007).
[Crossref]
S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, “Electron density and temperature measurements in a laser produced carbon plasma,” J. Appl. Phys. 82(5), 2140–2146 (1997).
[Crossref]
J. Hermann, C. Boulmer-Leborgne, and D. Hong, “Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption,” J. Appl. Phys. 83(2), 691–696 (1998).
[Crossref]
R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5(2), 123–175 (1970).
[Crossref]
R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50(1), 013602 (2011).
[Crossref]
B. Sadigh, P. Erhart, D. Åberg, A. Trave, E. Schwegler, and J. Bude, “First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass,” Phys. Rev. Lett. 106(2), 027401 (2011).
[Crossref]
[PubMed]
C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[Crossref]
[PubMed]
J. T. Dickinson, S. C. Langford, J. J. Shin, and D. L. Doering, “Positive ion emission from excimer laser excited MgO surfaces,” Phys. Rev. Lett. 73(19), 2630–2633 (1994).
[Crossref]
[PubMed]
A. Huber, I. Beigman, D. Borodin, P. Mertens, V. Philipps, A. Pospieszczyk, U. Samm, B. Schweer, G. Sergienko, and L. Vainshtein, “Spectroscopic observation of Si I- and Si II- emission lines in the boundary of TEXTOR and comparison with kinetic calculations,” Plasma Phys. Contr. Fusion 45(2), 89–103 (2003).
[Crossref]
M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003).
[Crossref]
A. K. Burnham, L. Hackel, P. Wegner, T. Parham, L. Hrubesh, B. Penetrante, P. Whitman, S. Demos, J. Menapace, M. Runkel, M. Fluss, M. Feit, M. Key, and T. Biesiada, “Improving 351-nm damage performance of large-aperture fused silica and DKDP optics,” Proc. SPIE 4679, 173–185 (2002).
[Crossref]
P. S. Dalyander, I. B. Gornushkin, and D. W. Hahn, “Numerical simulation of laser-induced breakdown spectroscopy: modeling of aerosol analysis with finite diffusion and vaporization effects,” Spectrochim. Acta B 63(2), 293–304 (2008).
[Crossref]
C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: a review of experiments and methods,” Spectrochim. Acta B 63(9), 893–916 (2008).
[Crossref]
H. C. Liu, X. L. Mao, J. H. Yoo, and R. E. Russo, “Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon,” Spectrochim. Acta B 54(11), 1607–1624 (1999).
[Crossref]
M. Milán and J. J. Laserna, “Diagnostics of silicon plasmas produced by visible nanosecond laser ablation,” Spectrochim. Acta B 56(3), 275–288 (2001).
[Crossref]
G. A. Lithgow and S. G. Buckley, “Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B 60(7-8), 1060–1069 (2005).
[Crossref]
I. B. Gornushkin, A. Ya. Kazakov, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Radiation dynamics of post-breakdown laser induced plasma,” Spectrochim. Acta B 59(4), 401–418 (2004).
[Crossref]
J. P. Singh and S. N. Thakur, eds., in Laser-Induced Breakdown Spectroscopy (Elsevier, Oxford, 2007).
S. I. Anisimov and V. A. Khokhlov, Instabilities in Laser-Matter Interaction (CRC Press, 1999).