Abstract

A wide-range split-ladder photonic crystal cavity which is tuned by changing its intrinsic gap width is designed and experimentally verified. Different from the coupled cavities that feature resonance splitting into symmetric and anti-symmetric modes, the single split-ladder cavity has only the symmetric modes of fundamental resonance and second-order resonance in its band gap. Finite-difference time-domain simulations demonstrate that bipolar resonance tuning (red shift and blue shift respectively) can be achieved by shrinking and expanding the cavity’s gap, and that there is a linear relationship between the resonance shifts and changes in gap width. Simulations also show that the split-ladder cavity can possess a high Q-factor when the total number of air holes in the cavity is increased. Experimentally, comb drive actuator is used to control the extent of the cavity’s gap and the variation of its displacements with applied voltage is calibrated with a scanning electron microscope. The measured wavelength of the second-order resonance shifts linearly towards blue with increase in gap width. The maximum blue shift is 17 nm, corresponding to a cavity gap increase of 26 nm with no obvious degradation of Q-factor.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
    [CrossRef]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30(19), 2575–2577 (2005).
    [CrossRef] [PubMed]
  3. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
    [CrossRef]
  4. M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett.83(6), 1074 (2003).
    [CrossRef]
  5. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express15(4), 1823–1831 (2007).
    [CrossRef] [PubMed]
  6. P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechaincal filters,” Nat. Commun.3, 846 (2012).
  7. J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express17(1), 304–313 (2009).
    [CrossRef] [PubMed]
  8. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
    [CrossRef] [PubMed]
  9. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  10. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical diction,” Appl. Phys. Lett.82(26), 4648 (2003).
    [CrossRef]
  11. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
    [CrossRef] [PubMed]
  12. M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express17(17), 14618–14626 (2009).
    [CrossRef] [PubMed]
  13. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
    [CrossRef] [PubMed]
  14. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
    [CrossRef] [PubMed]
  15. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express16(3), 1623–1631 (2008).
    [CrossRef] [PubMed]
  16. T. Sünner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett.92(26), 261112 (2008).
    [CrossRef]
  17. F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
    [CrossRef]
  18. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
    [CrossRef]
  19. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett.30(15), 1989–1991 (2005).
    [CrossRef] [PubMed]
  20. M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity,” Opt. Express17(19), 17118–17129 (2009).
    [CrossRef] [PubMed]
  21. J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express17(1), 304–313 (2009).
    [CrossRef] [PubMed]
  22. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
    [CrossRef] [PubMed]
  23. I. Märki, M. Salt, and H. P. Herzig, “Tuning the resonance of a photonic crystal microcavity with an AFM probe,” Opt. Express14(7), 2969–2978 (2006).
    [CrossRef] [PubMed]
  24. W. C. L. Hopman, K. O. van der Werf, A. J. F. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, “Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance,” Opt. Express14(19), 8745–8752 (2006).
    [CrossRef] [PubMed]
  25. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett.95(15), 153904 (2005).
    [CrossRef] [PubMed]
  26. K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett.89(2), 021102 (2006).
    [CrossRef]
  27. Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett.90(3), 031911 (2007).
    [CrossRef]
  28. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express16(19), 14421–14428 (2008).
    [CrossRef] [PubMed]
  29. L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavites,” Appl. Phys. Lett.98(21), 211120 (2011).
    [CrossRef]
  30. X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express18(21), 22232–22244 (2010).
    [CrossRef] [PubMed]
  31. X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Enhanced resonance tuning of photonic crystal nanocavities by integration of optimized near-field multitip nanoprobes,” J. Nanophotonics5(1), 059503 (2011).
    [CrossRef]
  32. X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010).
    [CrossRef] [PubMed]
  33. X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonator utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett.23(18), 1310–1312 (2011).
    [CrossRef]
  34. A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97(18), 181106 (2010).
    [CrossRef]
  35. M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express19(25), 24905–24921 (2011).
    [CrossRef] [PubMed]
  36. P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
    [CrossRef]
  37. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express16(15), 11095–11102 (2008).
    [CrossRef] [PubMed]
  38. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
    [CrossRef]
  39. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010).
    [CrossRef] [PubMed]
  40. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
    [CrossRef] [PubMed]
  41. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
    [CrossRef]
  42. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
    [CrossRef] [PubMed]
  43. G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
    [CrossRef]
  44. J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett.101(7), 071104 (2012).
    [CrossRef]
  45. R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacement,” J. Micromech. Microeng.6(3), 320–329 (1996).
    [CrossRef]
  46. A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photonics J.4(5), 1536–1541 (2012).
    [CrossRef]
  47. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
    [CrossRef] [PubMed]

2012 (3)

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechaincal filters,” Nat. Commun.3, 846 (2012).

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett.101(7), 071104 (2012).
[CrossRef]

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photonics J.4(5), 1536–1541 (2012).
[CrossRef]

2011 (6)

G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
[CrossRef]

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavites,” Appl. Phys. Lett.98(21), 211120 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Enhanced resonance tuning of photonic crystal nanocavities by integration of optimized near-field multitip nanoprobes,” J. Nanophotonics5(1), 059503 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonator utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett.23(18), 1310–1312 (2011).
[CrossRef]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express19(25), 24905–24921 (2011).
[CrossRef] [PubMed]

2010 (6)

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express18(21), 22232–22244 (2010).
[CrossRef] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97(18), 181106 (2010).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

2009 (10)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express17(1), 304–313 (2009).
[CrossRef] [PubMed]

J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express17(1), 304–313 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express17(17), 14618–14626 (2009).
[CrossRef] [PubMed]

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity,” Opt. Express17(19), 17118–17129 (2009).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

2008 (4)

2007 (3)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett.90(3), 031911 (2007).
[CrossRef]

Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express15(4), 1823–1831 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (4)

2003 (3)

M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett.83(6), 1074 (2003).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical diction,” Appl. Phys. Lett.82(26), 4648 (2003).
[CrossRef]

2000 (1)

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

1997 (1)

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

1996 (1)

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacement,” J. Micromech. Microeng.6(3), 320–329 (1996).
[CrossRef]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97(18), 181106 (2010).
[CrossRef]

Asano, T.

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Balet, L.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

Barclay, P.

Beveratos, A.

Birner, A.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
[CrossRef]

Blasius, T. D.

Bogaerts, W.

Braive, R.

Brunstein, M.

Buchler, B. C.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett.95(15), 153904 (2005).
[CrossRef] [PubMed]

Bulu, I.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechaincal filters,” Nat. Commun.3, 846 (2012).

Busch, K.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
[CrossRef]

Camacho, R.

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

Chau, F. S.

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonator utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett.23(18), 1310–1312 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Enhanced resonance tuning of photonic crystal nanocavities by integration of optimized near-field multitip nanoprobes,” J. Nanophotonics5(1), 059503 (2011).
[CrossRef]

X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express18(21), 22232–22244 (2010).
[CrossRef] [PubMed]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

Chew, X.

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Enhanced resonance tuning of photonic crystal nanocavities by integration of optimized near-field multitip nanoprobes,” J. Nanophotonics5(1), 059503 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonator utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett.23(18), 1310–1312 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express18(21), 22232–22244 (2010).
[CrossRef] [PubMed]

Cohen, J.

Danner, A. J.

G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

de Ridder, R. M.

De Wilde, Y.

Deng, J.

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonator utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett.23(18), 1310–1312 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Enhanced resonance tuning of photonic crystal nanocavities by integration of optimized near-field multitip nanoprobes,” J. Nanophotonics5(1), 059503 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express18(21), 22232–22244 (2010).
[CrossRef] [PubMed]

Deotare, P. B.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechaincal filters,” Nat. Commun.3, 846 (2012).

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Di Falco, A.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photonics J.4(5), 1536–1541 (2012).
[CrossRef]

Dundar, M. A.

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavites,” Appl. Phys. Lett.98(21), 211120 (2011).
[CrossRef]

Eich, M.

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

Elwenspoek, M.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacement,” J. Micromech. Microeng.6(3), 320–329 (1996).
[CrossRef]

Englund, D.

Erickson, D.

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Fan, S.

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett.30(15), 1989–1991 (2005).
[CrossRef] [PubMed]

M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
[CrossRef]

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Faraon, A.

Ferrera, J.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Fiore, A.

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavites,” Appl. Phys. Lett.98(21), 211120 (2011).
[CrossRef]

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

Forchel, A.

T. Sünner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett.92(26), 261112 (2008).
[CrossRef]

Foresi, J. S.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Francardi, M.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

Frank, I. W.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechaincal filters,” Nat. Commun.3, 846 (2012).

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Gerardino, A.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

Gösele, U.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
[CrossRef]

Groeneveld, A. W.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacement,” J. Micromech. Microeng.6(3), 320–329 (1996).
[CrossRef]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Gurioli, M.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

Hane, K.

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express16(19), 14421–14428 (2008).
[CrossRef] [PubMed]

Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett.90(3), 031911 (2007).
[CrossRef]

K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett.89(2), 021102 (2006).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Herzig, H. P.

Hofling, S.

T. Sünner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett.92(26), 261112 (2008).
[CrossRef]

Hollink, A. J. F.

Hopman, W. C. L.

Hostein, R.

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Ilic, R.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechaincal filters,” Nat. Commun.3, 846 (2012).

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Intonti, F.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

Ippen, E. P.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Jaskorzynska, B.

M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett.83(6), 1074 (2003).
[CrossRef]

Joannopoulos, J. D.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

John, S.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
[CrossRef]

Kafesaki, M.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett.95(15), 153904 (2005).
[CrossRef] [PubMed]

Kamp, M.

T. Sünner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett.92(26), 261112 (2008).
[CrossRef]

Kanamori, Y.

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express16(19), 14421–14428 (2008).
[CrossRef] [PubMed]

Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett.90(3), 031911 (2007).
[CrossRef]

K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett.89(2), 021102 (2006).
[CrossRef]

Karle, T. J.

Kawasaki, K.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kimerling, L. C.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Kitani, T.

Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett.90(3), 031911 (2007).
[CrossRef]

Koenderink, A. F.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett.95(15), 153904 (2005).
[CrossRef] [PubMed]

Kokubun, Y.

Krauss, T. F.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photonics J.4(5), 1536–1541 (2012).
[CrossRef]

Kuramochi, E.

Kwon, S. H.

T. Sünner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett.92(26), 261112 (2008).
[CrossRef]

Lee, C.

G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Legtenberg, R.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacement,” J. Micromech. Microeng.6(3), 320–329 (1996).
[CrossRef]

Lehmann, V.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
[CrossRef]

Leonard, S. W.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
[CrossRef]

Levenson, J. A.

Li, L. H.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

Liang, G.

G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
[CrossRef]

Loke, Y. C.

Loncar, M.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechaincal filters,” Nat. Commun.3, 846 (2012).

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical diction,” Appl. Phys. Lett.82(26), 4648 (2003).
[CrossRef]

Mandal, S.

Märki, I.

Massari, M.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photonics J.4(5), 1536–1541 (2012).
[CrossRef]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Mayer Alegre, T. P.

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Meenehan, S.

Midolo, L.

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavites,” Appl. Phys. Lett.98(21), 211120 (2011).
[CrossRef]

Mitsugi, S.

Mondia, J. P.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
[CrossRef]

Moreau, V.

Nishiguchi, K.

Noda, S.

Notomi, M.

Notzel, R.

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavites,” Appl. Phys. Lett.98(21), 211120 (2011).
[CrossRef]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Painter, O.

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express19(25), 24905–24921 (2011).
[CrossRef] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97(18), 181106 (2010).
[CrossRef]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Petrov, A.

Qiang, Z.

Qiu, M.

M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett.83(6), 1074 (2003).
[CrossRef]

Qiu, Y.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical diction,” Appl. Phys. Lett.82(26), 4648 (2003).
[CrossRef]

Quan, Q.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechaincal filters,” Nat. Commun.3, 846 (2012).

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

Riboli, F.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

Rober-Philip, I.

Roh, Y. G.

Romanato, F.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photonics J.4(5), 1536–1541 (2012).
[CrossRef]

Ryckman, J. D.

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett.101(7), 071104 (2012).
[CrossRef]

Safavi-Naeini, A. H.

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express19(25), 24905–24921 (2011).
[CrossRef] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97(18), 181106 (2010).
[CrossRef]

Sagnes, I.

Salt, M.

Sandoghdar, V.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett.95(15), 153904 (2005).
[CrossRef] [PubMed]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Scherer, A.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical diction,” Appl. Phys. Lett.82(26), 4648 (2003).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Schlereth, T. W.

T. Sünner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett.92(26), 261112 (2008).
[CrossRef]

Schulz, S. A.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photonics J.4(5), 1536–1541 (2012).
[CrossRef]

Scullion, M. G.

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photonics J.4(5), 1536–1541 (2012).
[CrossRef]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30(19), 2575–2577 (2005).
[CrossRef] [PubMed]

Smith, H. I.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Soljacic, M.

M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
[CrossRef]

Song, B. S.

Soref, R. A.

Srinivasan, K.

Steinmeyer, G.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Stichel, T.

T. Sünner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett.92(26), 261112 (2008).
[CrossRef]

Stobbe, S.

Subramaniam, V.

Sünner, T.

T. Sünner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett.92(26), 261112 (2008).
[CrossRef]

Takahashi, K.

Tanabe, T.

Tang, X.

Taniyama, H.

Tessier, G.

Thoen, E. R.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Toader, O.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
[CrossRef]

Toishi, M.

Uesugi, T.

Umemori, K.

K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett.89(2), 021102 (2006).
[CrossRef]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

van der Werf, K. O.

van Driel, H. M.

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
[CrossRef]

van Veldhoven, P. J.

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavites,” Appl. Phys. Lett.98(21), 211120 (2011).
[CrossRef]

Vignolini, S.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

Villeneuve, P. R.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Vuckovic, J.

Wang, Z.

Weiss, S. M.

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett.101(7), 071104 (2012).
[CrossRef]

Wiersma, D. S.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

Winger, M.

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express19(25), 24905–24921 (2011).
[CrossRef] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97(18), 181106 (2010).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Wülbern, J. H.

Yacomotti, A. M.

Yanik, M. F.

M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Yu, H.

Zani, M.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

Zhang, Y.

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechaincal filters,” Nat. Commun.3, 846 (2012).

Zhou, G.

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonator utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett.23(18), 1310–1312 (2011).
[CrossRef]

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Enhanced resonance tuning of photonic crystal nanocavities by integration of optimized near-field multitip nanoprobes,” J. Nanophotonics5(1), 059503 (2011).
[CrossRef]

X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express18(21), 22232–22244 (2010).
[CrossRef] [PubMed]

X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010).
[CrossRef] [PubMed]

Zhou, W.

AIP Advances (1)

G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
[CrossRef]

Appl. Phys. Lett. (12)

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett.101(7), 071104 (2012).
[CrossRef]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97(18), 181106 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96(20), 203102 (2010).
[CrossRef]

M. F. Yanik, S. Fan, and M. Soljacic, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003).
[CrossRef]

M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett.83(6), 1074 (2003).
[CrossRef]

T. Sünner, T. Stichel, S. H. Kwon, T. W. Schlereth, S. Hofling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett.92(26), 261112 (2008).
[CrossRef]

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett.95(17), 173112 (2009).
[CrossRef]

K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett.89(2), 021102 (2006).
[CrossRef]

Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett.90(3), 031911 (2007).
[CrossRef]

L. Midolo, P. J. van Veldhoven, M. A. Dundar, R. Notzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavites,” Appl. Phys. Lett.98(21), 211120 (2011).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical diction,” Appl. Phys. Lett.82(26), 4648 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonator utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett.23(18), 1310–1312 (2011).
[CrossRef]

IEEE Photonics J. (1)

A. Di Falco, M. Massari, M. G. Scullion, S. A. Schulz, F. Romanato, and T. F. Krauss, “Propagation losses of slotted photonic crystal waveguides,” IEEE Photonics J.4(5), 1536–1541 (2012).
[CrossRef]

J. Micromech. Microeng. (1)

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacement,” J. Micromech. Microeng.6(3), 320–329 (1996).
[CrossRef]

J. Nanophotonics (1)

X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Enhanced resonance tuning of photonic crystal nanocavities by integration of optimized near-field multitip nanoprobes,” J. Nanophotonics5(1), 059503 (2011).
[CrossRef]

Nat. Commun. (1)

P. B. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Loncar, “All optical reconfiguration of optomechaincal filters,” Nat. Commun.3, 846 (2012).

Nat. Photonics (1)

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Nature (3)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009).
[CrossRef] [PubMed]

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Opt. Express (19)

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express18(21), 22232–22244 (2010).
[CrossRef] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express19(25), 24905–24921 (2011).
[CrossRef] [PubMed]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express14(1), 377–386 (2006).
[CrossRef] [PubMed]

I. Märki, M. Salt, and H. P. Herzig, “Tuning the resonance of a photonic crystal microcavity with an AFM probe,” Opt. Express14(7), 2969–2978 (2006).
[CrossRef] [PubMed]

W. C. L. Hopman, K. O. van der Werf, A. J. F. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, “Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance,” Opt. Express14(19), 8745–8752 (2006).
[CrossRef] [PubMed]

Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express15(4), 1823–1831 (2007).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express16(15), 11095–11102 (2008).
[CrossRef] [PubMed]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express16(19), 14421–14428 (2008).
[CrossRef] [PubMed]

J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express17(1), 304–313 (2009).
[CrossRef] [PubMed]

J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express17(1), 304–313 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express17(5), 3802–3817 (2009).
[CrossRef] [PubMed]

M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express17(17), 14618–14626 (2009).
[CrossRef] [PubMed]

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity,” Opt. Express17(19), 17118–17129 (2009).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimenisional photonic crystals using liquid crystal infiltration,” Phys. Rev. B61(4), R2389–R2392 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett.95(15), 153904 (2005).
[CrossRef] [PubMed]

Science (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Local scanning electron microscope (SEM) image of split-ladder cavity, where a is the photonic crystal lattice constant; w is the cavity width; g is the slot width; hz is the axial hole lengths; hx is the transversal hole widths. (b) Axial TE-like band structure of split-ladder lattice. Inset: normalized electric field component in x direction of first (lowest-order) band edge. (c) Normalized lattice periods of half cavity (from center to one side). (d) Normalized wavelengths corresponding to first band edges of lattices in (c). (e) Fundamental and (f) second-order resonance mode of split-ladder cavity with 35 holes. The contour plot of the cavity’s refractive index is shown by dark outline.

Fig. 2
Fig. 2

(a) Simulated Q-factor of fundamental resonance versus total number of cavity holes. Cavity gap is fixed in 120 nm. (b) Simulated resonant wavelength (fundamental and second-order) λ versus cavity gap change Δg. The number of cavity holes is 25. The cavity dimensions are consistent with those in the previous discussion.

Fig. 3
Fig. 3

Schematic of setup used to characterize the tunable split-ladder cavity. TLS, tunable laser source; FPC, fiber polarization controller; CUT, chip under test; OSA, optical spectrum analyzer.

Fig. 4
Fig. 4

(a) Global SEM image of electrically tunable split-ladder cavity with NEMS comb drive actuators. The white outline shows the released region. (b) The magnified SEM image for actuator’s critical dimensions. The thickness, width and length of the folded beams are 260 nm, 463 nm and 10.2 µm respectively; the thickness and width of comb drive fingers are 260 nm and 182 nm respectively; initial finger overlap is 197 nm; the air gap between two adjacent fingers is 211 nm; the finger number is 25. (c) Supporting region of split-ladder cavity. The cavity is supported by NEMS actuator and disconnect with coupling waveguide. (d) Grating coupler designed for coupling light between chip under test and fibers. (e) Joint of rib waveguide and air-suspended waveguide. A misalignment can be seen clearly.

Fig. 5
Fig. 5

Experimentally-measured transmission spectrum of a 25-hole split-ladder cavity. (a) Fundamental resonance peak and (b) second-order resonance peak with zero applied voltage. Both of them are normalized by the second-order resonance peak. (c) Normalized second-order resonance peaks with various applied voltages. Both of them are normalized by the second-order resonance peak with zero applied voltage.

Fig. 6
Fig. 6

(a) Cavity gap change Δg versus applied voltage Va, which is calibrated by SEM. The green triangles are the measured data; the solid curve is a parabola fit, Δg = 0.0449Va2. (b) Second-order resonance wavelength shift Δλ versus cavity gap change Δg. The blue diamonds are the measured data; the solid line is a linear fit, Δg = −0.649Δλ. (c) The Q-factor versus cavity gap change Δg.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a n =( 0.9+ n 2 490 )× a m
1/ Q total =1/ Q axial +1/ Q transverse
x= F e k = nεt V a 2 s 4Et w 3 L 3 = nε L 3 4Es w 3   V a 2

Metrics