Abstract

We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt.26, 2621–2624 (1987).
    [CrossRef] [PubMed]
  2. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4, 37–40 (2010).
    [CrossRef]
  3. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011).
    [CrossRef] [PubMed]
  4. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
    [CrossRef] [PubMed]
  5. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15, 5976–5990 (2007).
    [CrossRef] [PubMed]
  6. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332, 555–559 (2011).
    [CrossRef] [PubMed]
  7. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
    [CrossRef] [PubMed]
  8. P. Del‘Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903 (2008).
    [CrossRef]
  9. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
    [CrossRef] [PubMed]
  10. J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.
  11. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011).
    [CrossRef]
  12. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photonics5, 293–296 (2011).
    [CrossRef]
  13. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716 (2011).
  14. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
    [CrossRef]
  15. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
    [CrossRef] [PubMed]
  16. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
    [CrossRef] [PubMed]
  17. T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012).
    [CrossRef]
  18. A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14, 4357–4362 (2006).
    [CrossRef] [PubMed]
  19. P. Del’Haye, O. Arcizet, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3, 529–533 (2009).
    [CrossRef]
  20. X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood, “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett.33, 2889–2891 (2008).
    [CrossRef] [PubMed]
  21. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express19, 11529–11538 (2011).
    [CrossRef] [PubMed]
  22. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high-Q ring resonator,” Opt. Express17, 11366–11370 (2009).
    [CrossRef] [PubMed]
  23. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28, 1302–1304 (2003).
    [CrossRef] [PubMed]
  24. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett.27, 1669–1671 (2002).
    [CrossRef]
  25. T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett.100, 103905 (2008).
    [CrossRef] [PubMed]
  26. A. Chiba, H. Fujiwara, J. I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
    [CrossRef]
  27. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12, 4742–4750 (2004).
    [CrossRef] [PubMed]
  28. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech.55, 1209–1218 (2007).
    [CrossRef]
  29. D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
    [CrossRef]
  30. L. Zhang, Y. Yue, R G. Beausoleil, and A E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express19, 8102–8107 (2011).
    [CrossRef] [PubMed]

2012

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012).
[CrossRef]

2011

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photonics5, 293–296 (2011).
[CrossRef]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332, 555–559 (2011).
[CrossRef] [PubMed]

L. Zhang, Y. Yue, R G. Beausoleil, and A E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express19, 8102–8107 (2011).
[CrossRef] [PubMed]

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express19, 11529–11538 (2011).
[CrossRef] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011).
[CrossRef] [PubMed]

2010

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4, 37–40 (2010).
[CrossRef]

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

2009

P. Del’Haye, O. Arcizet, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3, 529–533 (2009).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high-Q ring resonator,” Opt. Express17, 11366–11370 (2009).
[CrossRef] [PubMed]

2008

X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood, “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett.33, 2889–2891 (2008).
[CrossRef] [PubMed]

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett.100, 103905 (2008).
[CrossRef] [PubMed]

P. Del‘Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903 (2008).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

2007

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech.55, 1209–1218 (2007).
[CrossRef]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15, 5976–5990 (2007).
[CrossRef] [PubMed]

2006

A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14, 4357–4362 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

2005

A. Chiba, H. Fujiwara, J. I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

2004

2003

2002

1987

Alasaarela, T.

Alloatti, L.

Almeida, V. R.

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Arcizet, O.

P. Del’Haye, O. Arcizet, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3, 529–533 (2009).
[CrossRef]

P. Del‘Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903 (2008).
[CrossRef]

Bach, F.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

Barton, J. S.

Bauters, J. F.

Beausoleil, R G.

Blumenthal, D. J.

Bowers, J. E.

Bruinink, C. M.

Carmon, T.

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett.100, 103905 (2008).
[CrossRef] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12, 4742–4750 (2004).
[CrossRef] [PubMed]

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011).
[CrossRef]

Chen, X.

Chiba, A.

A. Chiba, H. Fujiwara, J. I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Dadap, J. I.

Del‘Haye, P.

P. Del‘Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903 (2008).
[CrossRef]

Del’Haye, P.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

P. Del’Haye, O. Arcizet, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3, 529–533 (2009).
[CrossRef]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716 (2011).

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332, 555–559 (2011).
[CrossRef] [PubMed]

Fainman, Y.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011).
[CrossRef]

Foster, M. A.

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4, 37–40 (2010).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

Freude, W.

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express19, 11529–11538 (2011).
[CrossRef] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15, 5976–5990 (2007).
[CrossRef] [PubMed]

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

Fujiwara, H.

A. Chiba, H. Fujiwara, J. I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
[CrossRef] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4, 37–40 (2010).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012).
[CrossRef]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4, 37–40 (2010).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high-Q ring resonator,” Opt. Express17, 11366–11370 (2009).
[CrossRef] [PubMed]

Gorodetsky, M.

P. Del’Haye, O. Arcizet, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3, 529–533 (2009).
[CrossRef]

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012).
[CrossRef]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

Green, W. M. J.

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716 (2011).

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012).
[CrossRef]

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

Heck, M. J. R.

Heideman, R. G.

Henry, C. H.

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012).
[CrossRef]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716 (2011).

Hillerkuss, D.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716 (2011).

Holtzwarth, R.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332, 555–559 (2011).
[CrossRef] [PubMed]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

P. Del’Haye, O. Arcizet, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3, 529–533 (2009).
[CrossRef]

P. Del‘Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903 (2008).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716 (2011).

Honkanen, S.

Hotta, J. I.

A. Chiba, H. Fujiwara, J. I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

Hsieh, I.-W.

Ikeda, K.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photonics5, 293–296 (2011).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Jacome, L.

John, D. D.

Jordan, M.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

Katz, L. E.

Kazarinov, R. F.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332, 555–559 (2011).
[CrossRef] [PubMed]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

P. Del’Haye, O. Arcizet, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3, 529–533 (2009).
[CrossRef]

P. Del‘Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903 (2008).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett.27, 1669–1671 (2002).
[CrossRef]

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716 (2011).

Koos, C.

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15, 5976–5990 (2007).
[CrossRef] [PubMed]

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

Korn, D.

Kuzucu, O.

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011).
[CrossRef]

Lee, H. J.

Leinse, A.

Leuthold, J.

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express19, 11529–11538 (2011).
[CrossRef] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15, 5976–5990 (2007).
[CrossRef] [PubMed]

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

Levy, J. S.

Liang, W.

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photonics5, 293–296 (2011).
[CrossRef]

Lipson, M.

Liu, X.

Maleki, L.

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photonics5, 293–296 (2011).
[CrossRef]

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Manolatou, C.

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photonics5, 293–296 (2011).
[CrossRef]

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011).
[CrossRef]

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Okawachi, Y.

Orlowsky, K. J.

Osgood, R. M.

Oxborrow, M.

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett.100, 103905 (2008).
[CrossRef] [PubMed]

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech.55, 1209–1218 (2007).
[CrossRef]

Palmer, R.

Panepucci, R. R.

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Pfeifle, J.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

Picque, N.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716 (2011).

Poulton, C.

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012).
[CrossRef]

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

Saha, K.

Sasaki, K.

A. Chiba, H. Fujiwara, J. I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photonics5, 293–296 (2011).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Säynätjoki, A.

Schliesser, A.

P. Del‘Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903 (2008).
[CrossRef]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716 (2011).

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14, 4357–4362 (2006).
[CrossRef] [PubMed]

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Schwefel, H. G. L.

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett.100, 103905 (2008).
[CrossRef] [PubMed]

Seidel, D.

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photonics5, 293–296 (2011).
[CrossRef]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

Spillane, S. M.

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011).
[CrossRef]

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Stone, A. D.

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett.100, 103905 (2008).
[CrossRef] [PubMed]

Sun, P. C.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

Takeuchi, S.

A. Chiba, H. Fujiwara, J. I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

Tan, D. T. H.

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

Tervonen, A.

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14, 4357–4362 (2006).
[CrossRef] [PubMed]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4, 37–40 (2010).
[CrossRef]

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Vahala, K.

Vahala, K. J.

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett.100, 103905 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett.27, 1669–1671 (2002).
[CrossRef]

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011).
[CrossRef]

Vlasov, Y. A.

Wang, C.

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012).
[CrossRef]

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716 (2011).

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011).
[CrossRef]

Weimann, C.

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011).
[CrossRef]

Wen, Y. H.

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

Willner, A E.

Yang, L.

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett.100, 103905 (2008).
[CrossRef] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12, 4742–4750 (2004).
[CrossRef] [PubMed]

Yue, Y.

Zhang, L.

Appl. Opt.

Appl. Phys. Lett.

A. Chiba, H. Fujiwara, J. I. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett.96, 061101 (2010).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech.55, 1209–1218 (2007).
[CrossRef]

Nat. Photonics

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5, 770–776 (2011).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photonics5, 293–296 (2011).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4, 37–40 (2010).
[CrossRef]

T. Herr, K. Hartinger, J. Riemensberger, C. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6, 480–487 (2012).
[CrossRef]

P. Del’Haye, O. Arcizet, M. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3, 529–533 (2009).
[CrossRef]

Nature

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960–963 (2006).
[CrossRef] [PubMed]

Opt. Express

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12, 4742–4750 (2004).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14, 4357–4362 (2006).
[CrossRef] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15, 5976–5990 (2007).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express19, 24090–24101 (2011).
[CrossRef] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high-Q ring resonator,” Opt. Express17, 11366–11370 (2009).
[CrossRef] [PubMed]

L. Zhang, Y. Yue, R G. Beausoleil, and A E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express19, 8102–8107 (2011).
[CrossRef] [PubMed]

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition,” Opt. Express19, 11529–11538 (2011).
[CrossRef] [PubMed]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett.100, 103905 (2008).
[CrossRef] [PubMed]

P. Del‘Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett.101, 053903 (2008).
[CrossRef]

Science

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science321, 1335–1337 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332, 555–559 (2011).
[CrossRef] [PubMed]

Other

J. Pfeifle, C. Weimann, F. Bach, J. Riemensberger, K. Hartinger, D. Hillerkuss, M. Jordan, R. Holtzwarth, T. J. Kippenberg, J. Leuthold, W. Freude, and C. Koos, “Microresonator-based optical frequency combs for high-bitrate WDM data transmission,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2012), paper OW1C.4.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, and T. J. Kippenberg, “Mid-infrared optical frequency combs based on crystalline microresonators,” arXiv:1109.2716 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron micrograph of the cross-section of a HfO2 (green) coated Si3N4 (yellow) resonator before the SiO2 top cladding deposition. The Si3N4 core has a base width of 1700 nm and a height of 750 nm. The HfO2 coating thickness is 55 nm. The detachment of the HfO2 film on the lower right side of the resonator was caused by the cleaving process. Inset: Optical micrograph of a 50 μm radius ring resonator and coupling waveguide.

Fig. 2
Fig. 2

(a) Setup for frequency-comb-assisted-diode-laser spectroscopy; FPC, fiber polarization controller; MZI, Mach-Zehnder intensity modulator; BP, bandpass; DC-EDFA, dispersion compensated erbium-doped-fiber-amplifier. (b) Calibrated transmission spectrum of a 55 nm ALD-coated ring resonator with radius 301 μm and input polarization aligned to the TM11 mode. (c) Wavelength dependence of the free-spectral-range (FSR) over the measurement span of 8.7 THz, corresponding to 120 subsequent FSRs, based on 16 consecutive scans (symbols) in alternating direction. The red line is a linear fit from which both FSR D1/2π of 75.04 GHz and dispersion D2/2π of 350 kHz are determined.

Fig. 3
Fig. 3

(a) Simulations (lines) and measurements (symbols) of FSR D1/2π and dispersion D2/2π as function of wavelength of TE11 (a,c) and TM11 (b,d) modes for different HfO2 ALD coating thickness applied to 301 μm Si3N4 ring resonators with base width of 1700 nm and Si3N4 height of 750 nm. (e) Dispersion D1/2π at 1.55 μm as function of HFO2 coating thickness and Si3N4 thickness for TE11 mode. The black solid line marks the transition from normal to anomalous dispersion. (f) Same as (e) for TM11 mode.

Fig. 4
Fig. 4

Simulated resonator dispersion D2/2π at 1.55 μm for the TE11(a) and TM11(b) mode as function of ring radius and ring base width for Si3N4 ring resonators without HfO2 coating and Si3N4 height of 750 nm. The black solid line marks the transition from normal to anomalous dispersion. (c) Comparison of dispersion simulations (lines) and measurements (symbols) for TE11 and TM11 mode for 24 μm, 37 μm and 50 μm ring resonators with a base width of 1700 nm at wavelength 1.58 μm. Dashed lines show the resonator dispersion D2 if constant β2 is assumed (c.f. Eq. (2)). Deviations from simulations and measurements are due to additional normal dispersion introduced by the finite radius of the ring resonators. (d,e,f) Same as (a,b,c) but with 55 nm HfO2 coating.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D 2 = ω 1 2 ω + ω + 1 ,
β 2 = D 2 2 π R D 1 3 ,

Metrics