Abstract

We report on the photo-thermal activation of dielectric loaded plasmonic switches comprised of gold nanoparticle-doped polymer deposited onto a gold film. The plasmonic switches rely on a multi-mode interferometer design and are fabricated by electron beam lithography applied to a positive resin doped with gold nanoparticles at a volume ratio of 0.52%. A cross-bar switching is obtained at telecom wavelengths by pumping the devices with a visible beam having a frequency within the localized surface plasmon resonance band of the embedded nanoparticles. By comparing the switching performances of doped and undoped devices, we show that for the modest doping level we consider, the power needed to activate the doped switches is reduced by a factor 2.5 compared to undoped devices. The minimization of activation power is attributed to enhanced light-heat conversion and optimized spatial heat generation for doped devices and not to a change of the thermo-optic coefficient of the doped polymer.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006).
    [CrossRef]
  2. T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon waveguides,” Phys. Rev. B75, 245405 (2007).
    [CrossRef]
  3. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon waveguides,” Appl. Phys. Lett.90, 211101 (2007).
    [CrossRef]
  4. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
    [CrossRef]
  5. T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008).
    [CrossRef]
  6. J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric loaded surface plasmon polariton waveguides on a finite width metal strip,” Appl. Phys. Lett.96, 063 105 (2010).
    [CrossRef]
  7. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides.” Nano Lett.10, 4861–4867 (2010).
    [CrossRef]
  8. S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
    [CrossRef]
  9. D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.
  10. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010).
    [CrossRef] [PubMed]
  11. O. Tsilipakos, E. E. Kriesis, and S. I. Bozhevolnyi, “Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.109, 073 111 (2011).
    [CrossRef]
  12. K. Hassan, J.-C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys.110, 023 106 (2011).
    [CrossRef]
  13. G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
    [CrossRef]
  14. D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
    [CrossRef] [PubMed]
  15. D. Perron, M. Wu, C. Horvath, D. Bachman, and V. Van, “All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator,” Opt. Lett.36, 2731–2733 (2011).
    [CrossRef] [PubMed]
  16. H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett.6, 783–788 (2006).
    [CrossRef] [PubMed]
  17. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano today2, 30–38 (2007).
    [CrossRef]
  18. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9, 1139–1146 (2009).
    [CrossRef] [PubMed]
  19. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine; preparations, imaging, diagnostics, therapies and toxicity,” Chemical Soc. Rev.38, 1759–1782 (2009).
    [CrossRef]
  20. A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,”, Nano Lett.9, 2903–2908 (2009).
    [CrossRef] [PubMed]
  21. S. Maity, L. N. Downen, J. R. Bochinski, and L. I. Clarke, “Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials,” Polymer52, 1674–1685 (2011).
    [CrossRef]
  22. D. Hühn, A. Govorov, P. Rivera Gil, and W. J. Parak, “Photostimulated Au nanoheater in polymer and biological media: characterization of mechanical destruction and boiling,” Adv. Funct. Mater.22, 294–303 (2012).
    [CrossRef]
  23. C. Fang, S. Lei, Y. Zhao, J. Wang, and H. Wu, “A Gold Nanocrystal/Poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater.24, 94–98 (2012).
    [CrossRef]
  24. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104, 136 805 (2010).
    [CrossRef]
  25. A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle network for light and heat concentration,” ACS Nano4, 3434–3440 (2012).
    [CrossRef]
  26. A. Pitilakis and E. E. Kriesis, “Longitudinal 2x2 Switching Configurations Based on Thermo-Optically Addressed Dielectric-Loaded Plasmonic Waveguides,” J. Lightwave Technol.29, 2636–2646 (2011).
    [CrossRef]
  27. K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriesis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
    [CrossRef]
  28. M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
    [CrossRef]
  29. M. A. Garcia, J. Llopis, and S. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett.315, 313–320 (1999).
    [CrossRef]
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and sons, Inc., New York, 1983), page 136.
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., London, 1985).
  32. M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006).
    [CrossRef]
  33. M. Nevière and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, Inc. New-York-Basel, 2003).

2012 (6)

D. Hühn, A. Govorov, P. Rivera Gil, and W. J. Parak, “Photostimulated Au nanoheater in polymer and biological media: characterization of mechanical destruction and boiling,” Adv. Funct. Mater.22, 294–303 (2012).
[CrossRef]

C. Fang, S. Lei, Y. Zhao, J. Wang, and H. Wu, “A Gold Nanocrystal/Poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater.24, 94–98 (2012).
[CrossRef]

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle network for light and heat concentration,” ACS Nano4, 3434–3440 (2012).
[CrossRef]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

2011 (7)

D. Perron, M. Wu, C. Horvath, D. Bachman, and V. Van, “All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator,” Opt. Lett.36, 2731–2733 (2011).
[CrossRef] [PubMed]

A. Pitilakis and E. E. Kriesis, “Longitudinal 2x2 Switching Configurations Based on Thermo-Optically Addressed Dielectric-Loaded Plasmonic Waveguides,” J. Lightwave Technol.29, 2636–2646 (2011).
[CrossRef]

S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriesis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

O. Tsilipakos, E. E. Kriesis, and S. I. Bozhevolnyi, “Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.109, 073 111 (2011).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys.110, 023 106 (2011).
[CrossRef]

S. Maity, L. N. Downen, J. R. Bochinski, and L. I. Clarke, “Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials,” Polymer52, 1674–1685 (2011).
[CrossRef]

2010 (4)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104, 136 805 (2010).
[CrossRef]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric loaded surface plasmon polariton waveguides on a finite width metal strip,” Appl. Phys. Lett.96, 063 105 (2010).
[CrossRef]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides.” Nano Lett.10, 4861–4867 (2010).
[CrossRef]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010).
[CrossRef] [PubMed]

2009 (3)

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9, 1139–1146 (2009).
[CrossRef] [PubMed]

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine; preparations, imaging, diagnostics, therapies and toxicity,” Chemical Soc. Rev.38, 1759–1782 (2009).
[CrossRef]

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,”, Nano Lett.9, 2903–2908 (2009).
[CrossRef] [PubMed]

2008 (1)

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008).
[CrossRef]

2007 (4)

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon waveguides,” Phys. Rev. B75, 245405 (2007).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon waveguides,” Appl. Phys. Lett.90, 211101 (2007).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano today2, 30–38 (2007).
[CrossRef]

2006 (3)

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006).
[CrossRef]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett.6, 783–788 (2006).
[CrossRef] [PubMed]

M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006).
[CrossRef]

1999 (1)

M. A. Garcia, J. Llopis, and S. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett.315, 313–320 (1999).
[CrossRef]

Albrektsen, O.

Andersen, T. B.

Apostolopoulos, D.

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Arbouet, A.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle network for light and heat concentration,” ACS Nano4, 3434–3440 (2012).
[CrossRef]

Astruc, D.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine; preparations, imaging, diagnostics, therapies and toxicity,” Chemical Soc. Rev.38, 1759–1782 (2009).
[CrossRef]

Atwater, H. A.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides.” Nano Lett.10, 4861–4867 (2010).
[CrossRef]

Aussenegg, F. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006).
[CrossRef]

Avramopoulos, H.

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Bachman, D.

Baffou, G.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle network for light and heat concentration,” ACS Nano4, 3434–3440 (2012).
[CrossRef]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104, 136 805 (2010).
[CrossRef]

Baus, M.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Bochinski, J. R.

S. Maity, L. N. Downen, J. R. Bochinski, and L. I. Clarke, “Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials,” Polymer52, 1674–1685 (2011).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and sons, Inc., New York, 1983), page 136.

Boisselier, E.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine; preparations, imaging, diagnostics, therapies and toxicity,” Chemical Soc. Rev.38, 1759–1782 (2009).
[CrossRef]

Bolger, P.

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008).
[CrossRef]

Bouhelier, A.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric loaded surface plasmon polariton waveguides on a finite width metal strip,” Appl. Phys. Lett.96, 063 105 (2010).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

Bozhevolnyi, S.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008).
[CrossRef]

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon waveguides,” Phys. Rev. B75, 245405 (2007).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Bozhevolnyi, S. I.

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

O. Tsilipakos, E. E. Kriesis, and S. I. Bozhevolnyi, “Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.109, 073 111 (2011).
[CrossRef]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010).
[CrossRef] [PubMed]

Briggs, R. M.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides.” Nano Lett.10, 4861–4867 (2010).
[CrossRef]

Burgos, S. P.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides.” Nano Lett.10, 4861–4867 (2010).
[CrossRef]

Carlson, M. T.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9, 1139–1146 (2009).
[CrossRef] [PubMed]

Clarke, L. I.

S. Maity, L. N. Downen, J. R. Bochinski, and L. I. Clarke, “Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials,” Polymer52, 1674–1685 (2011).
[CrossRef]

Colas des Francs, G.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric loaded surface plasmon polariton waveguides on a finite width metal strip,” Appl. Phys. Lett.96, 063 105 (2010).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

Dereux, A.

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

K. Hassan, J.-C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys.110, 023 106 (2011).
[CrossRef]

S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriesis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010).
[CrossRef] [PubMed]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric loaded surface plasmon polariton waveguides on a finite width metal strip,” Appl. Phys. Lett.96, 063 105 (2010).
[CrossRef]

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Ditlbacher, H.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006).
[CrossRef]

Downen, L. N.

S. Maity, L. N. Downen, J. R. Bochinski, and L. I. Clarke, “Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials,” Polymer52, 1674–1685 (2011).
[CrossRef]

Drezet, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006).
[CrossRef]

Dujardin, E.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle network for light and heat concentration,” ACS Nano4, 3434–3440 (2012).
[CrossRef]

Fang, C.

C. Fang, S. Lei, Y. Zhao, J. Wang, and H. Wu, “A Gold Nanocrystal/Poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater.24, 94–98 (2012).
[CrossRef]

Fatome, J.

Fedoruk, M.

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,”, Nano Lett.9, 2903–2908 (2009).
[CrossRef] [PubMed]

Feigenbaum, E.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides.” Nano Lett.10, 4861–4867 (2010).
[CrossRef]

Feldmann, J.

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,”, Nano Lett.9, 2903–2908 (2009).
[CrossRef] [PubMed]

Finot, C.

Garcia, M. A.

M. A. Garcia, J. Llopis, and S. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett.315, 313–320 (1999).
[CrossRef]

Giannoulis, G.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Girard, C.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle network for light and heat concentration,” ACS Nano4, 3434–3440 (2012).
[CrossRef]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104, 136 805 (2010).
[CrossRef]

Gonzalez, M. U.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

Gosciniak, J.

Govorov, A.

D. Hühn, A. Govorov, P. Rivera Gil, and W. J. Parak, “Photostimulated Au nanoheater in polymer and biological media: characterization of mechanical destruction and boiling,” Adv. Funct. Mater.22, 294–303 (2012).
[CrossRef]

Govorov, A. O.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9, 1139–1146 (2009).
[CrossRef] [PubMed]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano today2, 30–38 (2007).
[CrossRef]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett.6, 783–788 (2006).
[CrossRef] [PubMed]

Grandidier, J.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric loaded surface plasmon polariton waveguides on a finite width metal strip,” Appl. Phys. Lett.96, 063 105 (2010).
[CrossRef]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides.” Nano Lett.10, 4861–4867 (2010).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

Hassan, K.

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

K. Hassan, J.-C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys.110, 023 106 (2011).
[CrossRef]

S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriesis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Hernandez, P.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9, 1139–1146 (2009).
[CrossRef] [PubMed]

Hickman, Z. N.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett.6, 783–788 (2006).
[CrossRef] [PubMed]

Hohenau, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006).
[CrossRef]

Holmgaard, T.

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008).
[CrossRef]

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon waveguides,” Phys. Rev. B75, 245405 (2007).
[CrossRef]

Horton, M. R.

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,”, Nano Lett.9, 2903–2908 (2009).
[CrossRef] [PubMed]

Horvath, C.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and sons, Inc., New York, 1983), page 136.

Hühn, D.

D. Hühn, A. Govorov, P. Rivera Gil, and W. J. Parak, “Photostimulated Au nanoheater in polymer and biological media: characterization of mechanical destruction and boiling,” Adv. Funct. Mater.22, 294–303 (2012).
[CrossRef]

Kalavrouziotis, D.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Karl, M.

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Kaya, S.

Kjelstrup-Hansen, J.

Kordesch, M. E.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett.6, 783–788 (2006).
[CrossRef] [PubMed]

Krasavin, A.

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008).
[CrossRef]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon waveguides,” Appl. Phys. Lett.90, 211101 (2007).
[CrossRef]

Krenn, J. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006).
[CrossRef]

Kriesis, E.

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Kriesis, E. E.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriesis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

O. Tsilipakos, E. E. Kriesis, and S. I. Bozhevolnyi, “Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.109, 073 111 (2011).
[CrossRef]

A. Pitilakis and E. E. Kriesis, “Longitudinal 2x2 Switching Configurations Based on Thermo-Optically Addressed Dielectric-Loaded Plasmonic Waveguides,” J. Lightwave Technol.29, 2636–2646 (2011).
[CrossRef]

Kumar, A.

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Lei, S.

C. Fang, S. Lei, Y. Zhao, J. Wang, and H. Wu, “A Gold Nanocrystal/Poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater.24, 94–98 (2012).
[CrossRef]

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006).
[CrossRef]

Llopis, J.

M. A. Garcia, J. Llopis, and S. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett.315, 313–320 (1999).
[CrossRef]

Maity, S.

S. Maity, L. N. Downen, J. R. Bochinski, and L. I. Clarke, “Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials,” Polymer52, 1674–1685 (2011).
[CrossRef]

Markey, L.

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys.110, 023 106 (2011).
[CrossRef]

S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriesis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric loaded plasmonic waveguide components,” Opt. Express18, 1207–1216 (2010).
[CrossRef] [PubMed]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric loaded surface plasmon polariton waveguides on a finite width metal strip,” Appl. Phys. Lett.96, 063 105 (2010).
[CrossRef]

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Marty, R.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle network for light and heat concentration,” ACS Nano4, 3434–3440 (2012).
[CrossRef]

Massenot, S.

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric loaded surface plasmon polariton waveguides on a finite width metal strip,” Appl. Phys. Lett.96, 063 105 (2010).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

Miliou, A.

Millot, G.

Nevière, M.

M. Nevière and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, Inc. New-York-Basel, 2003).

Nielsen, M. G.

Paje, S.

M. A. Garcia, J. Llopis, and S. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett.315, 313–320 (1999).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., London, 1985).

Palpant, B.

M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006).
[CrossRef]

Papaioannou, S.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Papaioannou, S. S.

Parak, W. J.

D. Hühn, A. Govorov, P. Rivera Gil, and W. J. Parak, “Photostimulated Au nanoheater in polymer and biological media: characterization of mechanical destruction and boiling,” Adv. Funct. Mater.22, 294–303 (2012).
[CrossRef]

Perron, D.

Pitilakis, A.

Pitilakis, A. K.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

Pitilakis, O.

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriesis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

Pleros, N.

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Popov, E.

M. Nevière and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, Inc. New-York-Basel, 2003).

Quidant, R.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle network for light and heat concentration,” ACS Nano4, 3434–3440 (2012).
[CrossRef]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104, 136 805 (2010).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

Rädler, J. O.

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,”, Nano Lett.9, 2903–2908 (2009).
[CrossRef] [PubMed]

Rashidi-Huyeh, M.

M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006).
[CrossRef]

Renger, J.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

Richardson, H. H.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9, 1139–1146 (2009).
[CrossRef] [PubMed]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano today2, 30–38 (2007).
[CrossRef]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett.6, 783–788 (2006).
[CrossRef] [PubMed]

Rivera Gil, P.

D. Hühn, A. Govorov, P. Rivera Gil, and W. J. Parak, “Photostimulated Au nanoheater in polymer and biological media: characterization of mechanical destruction and boiling,” Adv. Funct. Mater.22, 294–303 (2012).
[CrossRef]

Sanchot, A.

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle network for light and heat concentration,” ACS Nano4, 3434–3440 (2012).
[CrossRef]

Stefani, F. D.

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,”, Nano Lett.9, 2903–2908 (2009).
[CrossRef] [PubMed]

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006).
[CrossRef]

Stepanov, A. L.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006).
[CrossRef]

Tandler, P. J.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9, 1139–1146 (2009).
[CrossRef] [PubMed]

Tekin, T.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

Thomas, A. C.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett.6, 783–788 (2006).
[CrossRef] [PubMed]

Tolga, T.

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Tsilipakos, O.

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

O. Tsilipakos, E. E. Kriesis, and S. I. Bozhevolnyi, “Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.109, 073 111 (2011).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Urban, A. S.

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,”, Nano Lett.9, 2903–2908 (2009).
[CrossRef] [PubMed]

Van, V.

Volkov, V. S.

Vyrsokinos, K.

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Wang, J.

C. Fang, S. Lei, Y. Zhao, J. Wang, and H. Wu, “A Gold Nanocrystal/Poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater.24, 94–98 (2012).
[CrossRef]

Weeber, J.-C.

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express20, 7655–7662 (2012).
[CrossRef] [PubMed]

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

M. G. Nielsen, J.-C. Weeber, K. Hassan, J. Fatome, C. Finot, S. Kaya, L. Markey, O. Albrektsen, S. I. Bozhevolnyi, G. Millot, and A. Dereux, “Grating couplers for fiber-to-fiber characterizations of stand-alone dielectric loaded surface plasmon waveguide components,” J. Lightwave Technol.30, 3118–3125 (2012).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys.110, 023 106 (2011).
[CrossRef]

S. S. Papaioannou, K. Vyrsokinos, O. Tsilipakos, A. Pitilakis, K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, S. I. Bozhevolnyi, A. Miliou, E. E. Kriesis, and N. Pleros, “A 320 Gb/s-Throughput Capable 2 × 2 Silicon-Plasmonic Router Architecture for Optical Interconnects,” J. Lightwave Technol.29, 3185–3195 (2011).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriesis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric loaded surface plasmon polariton waveguides on a finite width metal strip,” Appl. Phys. Lett.96, 063 105 (2010).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

Wu, H.

C. Fang, S. Lei, Y. Zhao, J. Wang, and H. Wu, “A Gold Nanocrystal/Poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater.24, 94–98 (2012).
[CrossRef]

Wu, M.

Zayats, A.

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008).
[CrossRef]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon waveguides,” Appl. Phys. Lett.90, 211101 (2007).
[CrossRef]

Zhang, W.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett.6, 783–788 (2006).
[CrossRef] [PubMed]

Zhao, Y.

C. Fang, S. Lei, Y. Zhao, J. Wang, and H. Wu, “A Gold Nanocrystal/Poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater.24, 94–98 (2012).
[CrossRef]

ACS Nano (1)

A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, and E. Dujardin, “Plasmonic nanoparticle network for light and heat concentration,” ACS Nano4, 3434–3440 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

D. Hühn, A. Govorov, P. Rivera Gil, and W. J. Parak, “Photostimulated Au nanoheater in polymer and biological media: characterization of mechanical destruction and boiling,” Adv. Funct. Mater.22, 294–303 (2012).
[CrossRef]

Adv. Mater. (1)

C. Fang, S. Lei, Y. Zhao, J. Wang, and H. Wu, “A Gold Nanocrystal/Poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips,” Adv. Mater.24, 94–98 (2012).
[CrossRef]

Appl. Phys. Lett. (5)

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094 104 (2006).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon waveguides,” Appl. Phys. Lett.90, 211101 (2007).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91, 243102 (2007).
[CrossRef]

J. Grandidier, G. Colas des Francs, L. Markey, A. Bouhelier, S. Massenot, J.-C. Weeber, and A. Dereux, “Dielectric loaded surface plasmon polariton waveguides on a finite width metal strip,” Appl. Phys. Lett.96, 063 105 (2010).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, A. Dereux, O. Pitilakis, and E. E. Kriesis, “Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides,” Appl. Phys. Lett.99, 241 110 (2011).
[CrossRef]

Chem. Phys. Lett. (1)

M. A. Garcia, J. Llopis, and S. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett.315, 313–320 (1999).
[CrossRef]

Chemical Soc. Rev. (1)

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine; preparations, imaging, diagnostics, therapies and toxicity,” Chemical Soc. Rev.38, 1759–1782 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Giannoulis, D. Kalavrouziotis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. K. Pitilakis, E. E. Kriesis, K. Vyrsokinos, H. Avramopoulos, and N. Pleros, “Data transmission and thermo-optic tuning performance of dielectric-loaded plasmonic structures hetero-integrated on a silicon chip,” IEEE Photon. Technol. Lett.24, 374–376 (2012).
[CrossRef]

J. Appl. Phys. (2)

O. Tsilipakos, E. E. Kriesis, and S. I. Bozhevolnyi, “Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys.109, 073 111 (2011).
[CrossRef]

K. Hassan, J.-C. Weeber, L. Markey, and A. Dereux, “Thermo-optical control of dielectric loaded plasmonic racetrack resonators,” J. Appl. Phys.110, 023 106 (2011).
[CrossRef]

J. Lightwave Technol. (3)

Nano Lett. (4)

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9, 1139–1146 (2009).
[CrossRef] [PubMed]

A. S. Urban, M. Fedoruk, M. R. Horton, J. O. Rädler, F. D. Stefani, and J. Feldmann, “Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles,”, Nano Lett.9, 2903–2908 (2009).
[CrossRef] [PubMed]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides.” Nano Lett.10, 4861–4867 (2010).
[CrossRef]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett.6, 783–788 (2006).
[CrossRef] [PubMed]

Nano today (1)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano today2, 30–38 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (3)

M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic enhancement,” Phys. Rev. B74, 075 405 (2006).
[CrossRef]

T. Holmgaard, S. Bozhevolnyi, L. Markey, A. Dereux, A. Krasavin, P. Bolger, and A. Zayats, “Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths,” Phys. Rev. B78, 165431 (2008).
[CrossRef]

T. Holmgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon waveguides,” Phys. Rev. B75, 245405 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104, 136 805 (2010).
[CrossRef]

Polymer (1)

S. Maity, L. N. Downen, J. R. Bochinski, and L. I. Clarke, “Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials,” Polymer52, 1674–1685 (2011).
[CrossRef]

Other (4)

D. Kalavrouziotis, G. Giannoulis, D. Apostolopoulos, S. Papaioannou, A. Kumar, S. Bozhevolnyi, L. Markey, K. Hassan, J.-C. Weeber, A. Dereux, M. Baus, M. Karl, T. Tolga, O. Tsilipakos, A. Pitilakis, E. Kriesis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “10 Gb/s Transmission and Thermo-Optic Resonance Tuning in Silicon-Plasmonic Waveguide Platform,” in Proceedings 37th European Conference on Optical Communication (ECOC2011), 6066097, Geneva, Switzerland, 18–22 September 2011.

M. Nevière and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, Inc. New-York-Basel, 2003).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and sons, Inc., New York, 1983), page 136.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., London, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) SEM image of a NP-doped plasmonic MMI switch (scale bar=50μm). The dark regions are coated with polymer, light-gray regions correspond to bare gold film. (b) Zoom onto the region corresponding to the dashed perimeter shown in (a) showing the single-mode (SM) and multi-mode (MM) waveguides (Scale bar=10μm). (c) Detail of the transition between the single-mode and multi-mode regions (Scale bar= 1 μm). The nanoparticles are clearly visible on the DLSPPWs.

Fig. 2
Fig. 2

(a) Leakage radiation microscope set-up used for the observation and the photo-thermal activation of the switches. (b) (resp. (c)) Typical LRM images at λ0 =1580nm of a doped (resp. undoped) MMI waveguide (scale bar=100μm). (c) Single-exponential fits (solid lines) of the experimental LRM intensity (dots) along the doped and undoped MMI waveguide axis.

Fig. 3
Fig. 3

(a) Opto-geometrical parameters for the finite-element analysis of an undoped MMI waveguides, W =900nm, h =400nm (see Fig. 3(a)), npmma = 1.489, nAu = 0.57+i11.7 for a wavelength of λ0=1580nm. The trapezoidal shaped cross-cut of the DLSPPW accounts for the undercut of the vertical side-walls produced by PMMA processing. (b) (resp. (c)) Spatial distribution of the guided power for the fundamental symmetric (resp. higher-order anti-symmetric) DLSPPW mode.

Fig. 4
Fig. 4

(a) Absorbance spectra of NP-PMMA solutions with gold volume fractions of 38 part per million (ppm) and 74 ppm. (b) Absorbance spectra for NP-doped PMMA layers of different thicknesses deposited on a glass substrate. The gold volume fraction of solid PMMA is 5200ppm (0.52%).

Fig. 5
Fig. 5

(a) Solid lines: Experimental normal incidence transmittance (T) and near-normal incidence reflectance (R) spectra of a 80nm-thick gold film deposited onto a glass substrate using a titanium adhesion layer with a thickness of 3nm. The Absorption spectra (A) is computed from T and R. Dashed lines: comparison of the experimental spectra with computed spectra using the gold dielectric function tabulated in Ref. [31] and neglecting the effect of the adhesion layer. (b) Dots: Experimental absorption values at 532nm for doped and undoped PMMA layers deposited on a gold film. Solid lines: computed absorption at 532nm for PMMA layers deposited on a gold film. For undoped PMMA, the best fit is obtained for nPMMA=1.502, for doped PMMA, nNP–PMMA=1.57+i0.031.

Fig. 6
Fig. 6

(a) LRM intensity integrated over the CROSS and the BAR output port of an un-doped MMI switch for a signal sweeping the telecom frequency range. (b) CROSS-BAR Extinction ratio spectrum computed using the results of (a). (c) (resp.(d)) LRM image of the CROSS (resp. BAR) state. (e) For a fixed wavelength of 1540nm, change of extinction ratio at the output port as a function of the pump power. (f) (resp.(g)) LRM image taken at λ0=1540nm in the hot (resp. cold) state. The elliptically shaped pump (532nm) beam with a power of 40mW is visible in (f). (h) Activation power efficiency obtained by correlating the extinction ratio change in (e) to a wavelength shift in the cold state given in (b).

Fig. 7
Fig. 7

(a) CROSS-BAR exctinction ratio for a doped MMI switch. (b) For a fixed wavelength of 1536nm, change of extinction ratio at the output port as a function of the pump power. (c) Differences of the LRM images recorded in the hot and cold state for a pumping power of 8mW. (d) Activation power efficiency obtained from (b) and (a).

Fig. 8
Fig. 8

(a) Configuration for the heat source density computation. The parameters are W =900nm, h =400nm and g =2.5μm. The thickness of the gold film is 80nm. (b) Heat source density at 532nm computed for along the vertical (z-axis) of the waveguide for the doped and undoped polymer.

Tables (1)

Tables Icon

Table 1 Activation efficiency obtained for three different NP-doped and undoped MMI switches

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p = λ 0 ( n e s n e a )
κ p = λ 0 × Abs × ln 10 4 π h
E R ( d B ) = 10 log 10 I BAR I CROSS
h ( r ) = 1 2 ω ε 0 ( ε ( r ) ) | E ( r ) | 2

Metrics