Abstract

Considering the polarization mode dispersion(PMD), the transmission penalty induced by nonlinear signal-noise interactions (NSNI) between the amplified spontaneous emission noise (ASE) and the information signal is investigated numerically for 40(100)G dispersion-managed(DM) polarization-multiplexed quadrature phase-shift keying (PM-QPSK) systems. We show that for single-channel PM-QPSK systems, PMD is helpful to reduce the NSNI-induced penalty. For multi-channel PM-QPSK system, however, the NSNI-induced nonlinear penalty is significantly enhanced by PMD, especially at low bit-rate. Our results show that due to the NSNI, the reduction of allowed input power that gives 1-dB Q penalty after 1600-km nonlinear transmission will increase from 1dB without PMD to 3.7dB with PMD for 42.8-Gbit/s coherent return-to-zero (RZ)-PM-QPSK systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kikuchi, “Coherent optical communication systems” in Optical Fiber Telecommunications, I. P. Kaminow, T. Li, and A. E. Willner, eds. (Academic Press, 2008), Chap. 3.
  2. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. B. Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, and S. Bigo, “Transmission of 16.4-bit/s capacity over 2550km using PDM QPSK modulation format and coherent receiver,” J. Lightwave Technol.27(3), 153–157 (2009).
    [CrossRef]
  3. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol.28(6), 939–951 (2010).
    [CrossRef]
  4. J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear fiber impairments mitigation of 40-Gbit/s polarization-multiplexed QPSK by digital processing in a coherent receiver,” J. Lightwave Technol.26(1), 36–42 (2008).
    [CrossRef]
  5. C. Xia, J. F. D. S. Pina, A. Striegler, and D. V. D. Borne, “PMD-induced nonlinear penalty reduction in coherent polarization-multiplexed QPSK transmission,” in Proceedings of ECOC (2010), paper Th.10.E.5.
  6. D. Sperti, P. Serena, and A. Bononi, “Optical solution to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photon. Technol. Lett.23(11), 667–669 (2011).
    [CrossRef]
  7. X. Yi, Y. Li, J. Wu, K. Xu, and J. Lin, “Impact of nonlinear signal-noise interactions on symbol-aligned and –interleaved formats in dispersion managed coherent PM-QPSK systems,” Opt. Express20(15), 17183–17191 (2012).
    [CrossRef]
  8. A. Bononi, P. Serena, N. Rossi, and D. Sperti, “Which is the dominant nonlinearity in long-haul PDM-QPSK coherent transmissions?” in Proceedings of ECOC (2010), paper Th.10.E.1.
  9. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett.15(23), 1351–1353 (1990).
    [CrossRef] [PubMed]
  10. H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett.15(2), 320–322 (2003).
  11. A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol.16(2), 73–85 (2010).
    [CrossRef]
  12. P. Serena and A. Bononi, “Nonlinear phase noise mitigation by polarization mode dispersion in dispersion managed coherent PDM-QPSK systems,” in Proceedings of ECOC (2009), paper P4.12.
  13. P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus inter-channel PMD in linearly compensated coherent PDM-PSK nonlinear transmission,” J. Lightwave Technol.29(11), 1691–1700 (2011).
    [CrossRef]
  14. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express17(6), 4815–4823 (2009).
    [CrossRef] [PubMed]
  15. H. Kim, “Nonlinear phase noise in phase-coded transmission,” in Proceedings of OFC (2005), paper OThO3.

2012 (1)

2011 (2)

D. Sperti, P. Serena, and A. Bononi, “Optical solution to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photon. Technol. Lett.23(11), 667–669 (2011).
[CrossRef]

P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus inter-channel PMD in linearly compensated coherent PDM-PSK nonlinear transmission,” J. Lightwave Technol.29(11), 1691–1700 (2011).
[CrossRef]

2010 (2)

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol.28(6), 939–951 (2010).
[CrossRef]

A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol.16(2), 73–85 (2010).
[CrossRef]

2009 (2)

2008 (1)

2003 (1)

H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett.15(2), 320–322 (2003).

1990 (1)

Achouche, M.

Bertran-Pardo, O.

Bigo, S.

Blache, F.

Bononi, A.

D. Sperti, P. Serena, and A. Bononi, “Optical solution to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photon. Technol. Lett.23(11), 667–669 (2011).
[CrossRef]

P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus inter-channel PMD in linearly compensated coherent PDM-PSK nonlinear transmission,” J. Lightwave Technol.29(11), 1691–1700 (2011).
[CrossRef]

A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol.16(2), 73–85 (2010).
[CrossRef]

Boutin, A.

Charlet, G.

Dupuy, J.-Y.

Gnauck, A. H.

H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett.15(2), 320–322 (2003).

Gordon, J. P.

Ip, E.

Kim, H.

H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett.15(2), 320–322 (2003).

Li, Y.

Lin, J.

Mardoyan, H.

Mollenauer, L. F.

Pardo, O. B.

Renaudier, J.

Rossi, N.

P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus inter-channel PMD in linearly compensated coherent PDM-PSK nonlinear transmission,” J. Lightwave Technol.29(11), 1691–1700 (2011).
[CrossRef]

A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol.16(2), 73–85 (2010).
[CrossRef]

Salsi, M.

Serena, P.

P. Serena, N. Rossi, O. Bertran-Pardo, J. Renaudier, A. Vannucci, and A. Bononi, “Intra- versus inter-channel PMD in linearly compensated coherent PDM-PSK nonlinear transmission,” J. Lightwave Technol.29(11), 1691–1700 (2011).
[CrossRef]

D. Sperti, P. Serena, and A. Bononi, “Optical solution to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photon. Technol. Lett.23(11), 667–669 (2011).
[CrossRef]

A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol.16(2), 73–85 (2010).
[CrossRef]

Sperti, D.

D. Sperti, P. Serena, and A. Bononi, “Optical solution to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photon. Technol. Lett.23(11), 667–669 (2011).
[CrossRef]

Tran, P.

Vannucci, A.

Verluise, F.

Wu, J.

Xie, C.

Xu, K.

Yi, X.

IEEE Photon. Technol. Lett. (2)

D. Sperti, P. Serena, and A. Bononi, “Optical solution to improve PDM-QPSK resilience against cross-channel nonlinearities: a comparison,” IEEE Photon. Technol. Lett.23(11), 667–669 (2011).
[CrossRef]

H. Kim and A. H. Gnauck, “Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,” IEEE Photon. Technol. Lett.15(2), 320–322 (2003).

J. Lightwave Technol. (4)

Opt. Express (2)

Opt. Fiber Technol. (1)

A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various modulation formats,” Opt. Fiber Technol.16(2), 73–85 (2010).
[CrossRef]

Opt. Lett. (1)

Other (5)

K. Kikuchi, “Coherent optical communication systems” in Optical Fiber Telecommunications, I. P. Kaminow, T. Li, and A. E. Willner, eds. (Academic Press, 2008), Chap. 3.

A. Bononi, P. Serena, N. Rossi, and D. Sperti, “Which is the dominant nonlinearity in long-haul PDM-QPSK coherent transmissions?” in Proceedings of ECOC (2010), paper Th.10.E.1.

C. Xia, J. F. D. S. Pina, A. Striegler, and D. V. D. Borne, “PMD-induced nonlinear penalty reduction in coherent polarization-multiplexed QPSK transmission,” in Proceedings of ECOC (2010), paper Th.10.E.5.

P. Serena and A. Bononi, “Nonlinear phase noise mitigation by polarization mode dispersion in dispersion managed coherent PDM-QPSK systems,” in Proceedings of ECOC (2009), paper P4.12.

H. Kim, “Nonlinear phase noise in phase-coded transmission,” in Proceedings of OFC (2005), paper OThO3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

System configurations in our simulations. (a)Transmission line; (b) block diagram of the RZ-PM-QPSK transmitter; (c) block diagram of the coherent receiver based on DSP technology.

Fig. 2
Fig. 2

(a) Q factor vs. PMD coefficient for single-channel 42.8-Gbit/s RZ-PM-QPSK systems after 20 × 80km nonlinear transmission. The launch power per channel is 5dBm. (b) Q factor vs. launch power per channel for single-channel 42.8-Gbit/s RZ-PM-QPSK systems after 20 × 80km nonlinear transmission. Solid line: PMD = 0ps/km1/2; Dashed line: PMD = 0.6ps/km1/2.

Fig. 3
Fig. 3

(a) Q factor vs. PMD coefficient for WDM 42.8-Gbit/s RZ-PM-QPSK systems after 20 × 80km nonlinear transmission. The launch power per channel is 2dBm. (b) Q factor vs. launch power per channel for WDM 42.8-Gbit/s RZ-PM-QPSK systems after 20 × 80km nonlinear transmission. Solid line: PMD = 0ps/km1/2; Dashed line: PMD = 0.6ps/km1/2.

Fig. 4
Fig. 4

Impact of PMD on NSNI-induced penalty for single-channel 112-Gbit/s RZ-PM-QPSK systems after 20 × 80km nonlinear transmission. (a) Q factor vs. PMD coefficient. The launch power per channel in this case is 3dBm. (b) Q factor vs. launch power per channel. Solid line: PMD = 0ps/km1/2; Dashed line: PMD = 0.6ps/km1/2.

Fig. 5
Fig. 5

Impact of PMD on NSNI-induced penalty for WDM 112-Gbit/s RZ-PM-QPSK systems after 20 × 80km nonlinear transmission. (a) Q factor vs. PMD coefficient. The launch power per channel in this case is 4dBm. (b) Q factor vs. launch power per channel. Solid line: PMD = 0ps/km1/2; Dashed line: PMD = 0.6ps/km1/2.

Metrics