Abstract

We report generation of 48 fs pulses at a center wavelength of 2070 nm using a degenerate optical parametric oscillator (OPO) synchronously-pumped with a commercially available 36-MHz, femtosecond, mode-locked, Yb-doped fiber laser. The spectral bandwidth of the output is ~137 nm, corresponding to a theoretical, transform-limited pulse width of 33 fs. The threshold of the OPO is less than 10 mW of average pump power. By tuning the cavity length, the output spectrum covers a spectral width of more than 400 nm, limited only by the bandwidth of the cavity mirrors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
    [CrossRef]
  2. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express19(7), 6296–6302 (2011).
    [CrossRef] [PubMed]
  3. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 µm using Tm,Ho:YAG lasers,” Opt. Lett.16(10), 773–775 (1991).
    [CrossRef] [PubMed]
  4. N. Sugimoto, N. Sims, K. Chan, and D. K. Killinger, “Eye-safe 2.1-Mu m Ho lidar for measuring atmospheric density profiles,” Opt. Lett.15(6), 302–304 (1990).
    [CrossRef] [PubMed]
  5. J. Moses, O. D. Mücke, A. Benedick, E. L. Falcão-Filho, S. W. Huang, K. H. Hong, A. M. Siddiqui, J. R. Birge, F. Ö. Ilday, and F. X. Kärtner, “2-micron optical parametric chirped pulse amplifier for long-wavelength driven high harmonic generation,” in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, San Jose, CA), paper CTuEE2 (2008).
  6. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B12(11), 2102–2116 (1995).
    [CrossRef]
  7. S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. J. F. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett.33(16), 1896–1898 (2008).
    [CrossRef] [PubMed]
  8. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express20(7), 7046–7053 (2012).
    [CrossRef] [PubMed]
  9. A. Marandi, N. C. Leindecker, V. Pervak, R. L. Byer, and K. L. Vodopyanov, “Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy,” Opt. Express20(7), 7255–7262 (2012).
    [CrossRef] [PubMed]
  10. A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, D. I. Yeom, F. Rotermund, V. Petrov, and U. Griebner, “175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes,” Opt. Express20(5), 5313–5318 (2012).
    [CrossRef] [PubMed]
  11. J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, “Optically referenced Tm-fiber-laser Frequency Comb,” in Lasers, Sources, and Related Photonic Devices Technical Digest, (Optical Society of America, San Diego, CA, USA, 2012), paper AT5A.3. http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2012-AT5A.3
  12. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847 (1984).
    [CrossRef]
  13. R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: A Treatise, H. Rabin and C.L. Tang, eds. (Academic, 1975), 587–702.
  14. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
    [CrossRef]
  15. S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. Malinowski, D. J. Richardson, and U. Keller, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett.17(2), 483–485 (2005).
    [CrossRef]

2012 (3)

2011 (1)

2010 (1)

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

2008 (2)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. J. F. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett.33(16), 1896–1898 (2008).
[CrossRef] [PubMed]

2005 (1)

S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. Malinowski, D. J. Richardson, and U. Keller, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett.17(2), 483–485 (2005).
[CrossRef]

1995 (1)

1991 (1)

1990 (1)

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847 (1984).
[CrossRef]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

Bosenberg, W. R.

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847 (1984).
[CrossRef]

Byer, R. L.

Carlsten, B. E.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Chan, K.

Choi, S. Y.

Colby, E. R.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Digonnet, M. J. F.

Eckardt, R. C.

Esarey, E. H.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Fejer, M. M.

Fermann, M.

Fuhrberg, P.

Furusawa, K.

S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. Malinowski, D. J. Richardson, and U. Keller, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett.17(2), 483–485 (2005).
[CrossRef]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847 (1984).
[CrossRef]

Graves, W. S.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Griebner, U.

Hale, C. P.

Hartl, I.

Henderson, S. W.

Hogan, M.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Huber, G.

Huffaker, A. V.

Jiang, J.

Kärtner, F. X.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Kavaya, M. J.

Keller, U.

S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. Malinowski, D. J. Richardson, and U. Keller, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett.17(2), 483–485 (2005).
[CrossRef]

Killinger, D. K.

Koopmann, P.

Lecomte, S.

S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. Malinowski, D. J. Richardson, and U. Keller, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett.17(2), 483–485 (2005).
[CrossRef]

Leemans, W. P.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Leindecker, N.

Leindecker, N. C.

Magee, J. R.

Malinowski, A.

S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. Malinowski, D. J. Richardson, and U. Keller, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett.17(2), 483–485 (2005).
[CrossRef]

Marandi, A.

Myers, L. E.

Paschotta, R.

S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. Malinowski, D. J. Richardson, and U. Keller, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett.17(2), 483–485 (2005).
[CrossRef]

Pawlik, S.

S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. Malinowski, D. J. Richardson, and U. Keller, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett.17(2), 483–485 (2005).
[CrossRef]

Pervak, V.

Petrov, V.

Pierce, J. W.

Plettner, T.

Rao, T.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Richardson, D. J.

S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. Malinowski, D. J. Richardson, and U. Keller, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett.17(2), 483–485 (2005).
[CrossRef]

Rosenzweig, J. B.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Rotermund, F.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

Schmidt, A.

Schmidt, B.

S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. Malinowski, D. J. Richardson, and U. Keller, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett.17(2), 483–485 (2005).
[CrossRef]

Schroeder, C. B.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Schunemann, P. G.

Sims, N.

Sugimoto, N.

Sutter, D.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847 (1984).
[CrossRef]

Urbanek, K.

Vodopyanov, K. L.

White, W. E.

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Wong, S. T.

Yeom, D. I.

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847 (1984).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. Malinowski, D. J. Richardson, and U. Keller, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett.17(2), 483–485 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nucl. Instrum. Methods Phys. Res. A (1)

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, and W. E. White, “New source technologies and their impact on future light sources,” Nucl. Instrum. Methods Phys. Res. A622(3), 657–668 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Other (3)

J. Moses, O. D. Mücke, A. Benedick, E. L. Falcão-Filho, S. W. Huang, K. H. Hong, A. M. Siddiqui, J. R. Birge, F. Ö. Ilday, and F. X. Kärtner, “2-micron optical parametric chirped pulse amplifier for long-wavelength driven high harmonic generation,” in Conference on Lasers and Electro-Optics (CLEO), (Optical Society of America, San Jose, CA), paper CTuEE2 (2008).

J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, “Optically referenced Tm-fiber-laser Frequency Comb,” in Lasers, Sources, and Related Photonic Devices Technical Digest, (Optical Society of America, San Diego, CA, USA, 2012), paper AT5A.3. http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2012-AT5A.3

R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: A Treatise, H. Rabin and C.L. Tang, eds. (Academic, 1975), 587–702.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the degenerate OPO. The gray boxed regions depict elements mounted on translation stages. M1: flat enhanced Au mirrors, M2: 100 mm ROC enhanced Au mirrors, M3: ½” Au mirror, IC: Dielectric mirror (HR for signal, AR for pump), OC: 2-µm thick pellicle.

Fig. 2
Fig. 2

Normalized parametric gain for varying crystal lengths and reflectance spectrum of the cavity mirrors. The gain bandwidth of 1-mm (red), 0.5-mm (green), and 0.25-mm (blue) MgO:PPLN crystals are shown. The roundtrip cavity mirror reflectance spectrum (without an output coupler) is shown as well (black, dashed).

Fig. 3
Fig. 3

The oscilloscope trace of the detected OPO signal output versus cavity length, which shows the cavity oscillation peaks. The oscillation peaks corresponding to degenerate operation are on the right side (cavity detuning of ~0 μm), and the OPO operation shifts towards non-degeneracy as the cavity length is reduced. Oscillation peaks from higher order transverse modes can be seen at detected signals below the oscillation peaks from the fundamental mode and contribute to the broadening of the oscillation peaks observed for the cavity detuning around −10 μm.

Fig. 4
Fig. 4

The normalized spectra of the OPO output versus cavity detuning length are shown in (a) and (b). (a) The degenerate oscillation peaks are at the bottom (cavity detuning of ~0 μm), while the non-degenerate peaks are at the top (cavity detuning of ~-20 μm). (b) The spectra for cavity detuning lengths near degeneracy (cavity detuning of 0 to 5 μm) from (a) are shown in greater detail, allowing for observation of the oscillation peaks from higher order transverse modes. The second order of the pump spectrum can be seen as a vertical line in (a) and (b) around 2070 nm. Depletion of the pump is visible in (a). Note: The peaks in the spectra are ~10 dB above the noise floor.

Fig. 5
Fig. 5

(a) Spectrum and (b) autocorrelation for individual oscillation peaks. (a) The spectrum for the degenerate peak (peak 1, blue) shows only a slight dip in the center of the spectrum (<2 dB), while the “nearly” non-degenerate peaks (such as peak 3, green) have a clear splitting between signal and idler. This splitting results in the modulation of the autocorrelation trace. (b) The autocorrelation traces were measured after a 200-μm thick Ge-filter. Peak 1 corresponds to the longest cavity length shown in Fig. 4(b), peak 2 is ~2 μm shorter in cavity length, while peak 3 is one of the oscillation peaks in the transition region between degenerate and non-degenerate oscillation. Note: The autocorrelation trace of peak 3 has a reduced peak to background ratio.

Fig. 6
Fig. 6

Roundtrip GDD for two cases: (blue curve) the GDD for 1 mm of MgO:PPLN and (red curve) the GDD of the same crystal including the GDD of the coated mirrors. The degeneracy point is at ~2070 nm.

Metrics