Abstract

We demonstrate the near-field coupling and energy transfer between photoexcited dye molecules and guided modes in layers of strongly absorbing dielectrics. The dye molecules decay by exciting long-range guided modes (LRGMs) in a thin layer of chalcogenide glass. These modes can exist in spite of the very large absorption of the material forming the layer. The LRGMs are detected by coupling then out to free space radiation through a prism in the Krestschmann configuration. By calculating the dissipated power of a dipole, representing a dye molecule, in the vicinity of the absorbing thin film, we show that there is a large probability of decay exciting LRGMs. This probability can reach 35% for perpendicularly oriented dipoles. The demonstration of the excitation of LRGMs in thin films of absorbing dielectrics by near-field coupling of excited molecules opens the possibility to compensate for the losses in the propagation of these modes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
    [CrossRef]
  2. R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010).
    [CrossRef]
  3. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon.3, 388–394 (2009).
    [CrossRef]
  4. G. Nenninger, P. Tobika, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuator B-Chem.74, 145–151 (2001).
    [CrossRef]
  5. G. J. Kovacs, “Surface polariton in the atr angular spectra of a thin iron film bounded by dielectric layers,” J. Opt. Soc. Am.68, 1325–1332 (1978).
    [CrossRef]
  6. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range coupled surface exciton polaritons,” Phys. Rev. Lett.64, 559–562 (1990).
    [CrossRef] [PubMed]
  7. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
    [CrossRef]
  8. C. Arnold, Y. Zhang, and J. Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
    [CrossRef]
  9. Y. Zhang, C. Arnold, P. Offermans, and J. G. Rivas, “Surface wave sensors based on nanometric layers of strongly absorbing materials,” Opt. Express20, 9431–9441 (2012).
    [CrossRef] [PubMed]
  10. V. Giannini, Y. Zhang, M. Forcales, and J. G. Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674–19685 (2008).
    [CrossRef] [PubMed]
  11. D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
    [CrossRef]
  12. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
    [CrossRef]
  13. J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett.94, 177401 (2005).
    [CrossRef] [PubMed]
  14. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008).
    [CrossRef] [PubMed]
  15. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
    [CrossRef] [PubMed]
  16. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon.4, 382–387 (2010).
    [CrossRef]
  17. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photon.4, 457–461 (2010).
    [CrossRef]
  18. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photon.6, 16–24 (2012).
    [CrossRef]
  19. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an excited molecule near a metal mirror: Energy transfer in the eu[sup 3 + ]/silver system,” J. Chem. Phys.60, 2184–2185 (1974).
    [CrossRef]
  20. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984).
    [CrossRef]
  21. A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B82, 035411 (2010).
    [CrossRef]
  22. L. Novotny, “Allowed and forbidden light in near-field optics. i. a single dipolar light source,” J. Opt. Soc. Am. A14, 91–104 (1997).
    [CrossRef]
  23. A. Sommerfeld, “Uber die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. Phys.28, 665–736 (1909).
    [CrossRef]
  24. J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
    [CrossRef]

2012 (2)

2010 (6)

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B82, 035411 (2010).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon.4, 382–387 (2010).
[CrossRef]

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photon.4, 457–461 (2010).
[CrossRef]

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010).
[CrossRef]

C. Arnold, Y. Zhang, and J. Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

2009 (2)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon.3, 388–394 (2009).
[CrossRef]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
[CrossRef]

2008 (4)

V. Giannini, Y. Zhang, M. Forcales, and J. G. Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674–19685 (2008).
[CrossRef] [PubMed]

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
[CrossRef]

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

2006 (1)

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

2005 (1)

J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett.94, 177401 (2005).
[CrossRef] [PubMed]

2001 (1)

G. Nenninger, P. Tobika, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuator B-Chem.74, 145–151 (2001).
[CrossRef]

1997 (1)

1991 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

1990 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range coupled surface exciton polaritons,” Phys. Rev. Lett.64, 559–562 (1990).
[CrossRef] [PubMed]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984).
[CrossRef]

1978 (1)

1974 (1)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an excited molecule near a metal mirror: Energy transfer in the eu[sup 3 + ]/silver system,” J. Chem. Phys.60, 2184–2185 (1974).
[CrossRef]

1909 (1)

A. Sommerfeld, “Uber die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. Phys.28, 665–736 (1909).
[CrossRef]

Ambati, M.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008).
[CrossRef] [PubMed]

Archambault, A.

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B82, 035411 (2010).
[CrossRef]

Arnold, C.

Y. Zhang, C. Arnold, P. Offermans, and J. G. Rivas, “Surface wave sensors based on nanometric layers of strongly absorbing materials,” Opt. Express20, 9431–9441 (2012).
[CrossRef] [PubMed]

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B82, 035411 (2010).
[CrossRef]

C. Arnold, Y. Zhang, and J. Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

Aussenegg, F.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
[CrossRef]

Bardou, N.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010).
[CrossRef]

Bartal, G.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008).
[CrossRef] [PubMed]

Berini, P.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photon.6, 16–24 (2012).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon.4, 382–387 (2010).
[CrossRef]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009).
[CrossRef]

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range coupled surface exciton polaritons,” Phys. Rev. Lett.64, 559–562 (1990).
[CrossRef] [PubMed]

Brunets, I.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an excited molecule near a metal mirror: Energy transfer in the eu[sup 3 + ]/silver system,” J. Chem. Phys.60, 2184–2185 (1974).
[CrossRef]

Collin, S.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010).
[CrossRef]

Danz, N.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photon.4, 457–461 (2010).
[CrossRef]

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photon.6, 16–24 (2012).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon.4, 382–387 (2010).
[CrossRef]

Deschamps, J.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010).
[CrossRef]

Ditlbacher, H.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
[CrossRef]

Eng, L.

J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett.94, 177401 (2005).
[CrossRef] [PubMed]

Forcales, M.

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984).
[CrossRef]

Galler, N.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
[CrossRef]

Gather, M. C.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photon.4, 457–461 (2010).
[CrossRef]

Genov, D. A.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008).
[CrossRef] [PubMed]

Gersen, H.

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

Giannini, V.

Grafstrom, S.

J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett.94, 177401 (2005).
[CrossRef] [PubMed]

Greffet, J.-J.

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B82, 035411 (2010).
[CrossRef]

Guérineau, N.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010).
[CrossRef]

Haïdar, R.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010).
[CrossRef]

Hohenau, A.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
[CrossRef]

Homola, J.

G. Nenninger, P. Tobika, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuator B-Chem.74, 145–151 (2001).
[CrossRef]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon.3, 388–394 (2009).
[CrossRef]

Kalkman, J.

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon.3, 388–394 (2009).
[CrossRef]

Koller, D.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
[CrossRef]

Kovacs, G. J.

Krenn, J.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
[CrossRef]

Kuipers, L.

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

Leitner, A.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
[CrossRef]

Leosson, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photon.4, 457–461 (2010).
[CrossRef]

List, E.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
[CrossRef]

Marquier, F.

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B82, 035411 (2010).
[CrossRef]

Mayy, M.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Meerholz, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photon.4, 457–461 (2010).
[CrossRef]

Nam, S. H.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008).
[CrossRef] [PubMed]

Nenninger, G.

G. Nenninger, P. Tobika, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuator B-Chem.74, 145–151 (2001).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Novotny, L.

Offermans, P.

Pelouard, J.-L.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010).
[CrossRef]

Podolskiy, V. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Polman, A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an excited molecule near a metal mirror: Energy transfer in the eu[sup 3 + ]/silver system,” J. Chem. Phys.60, 2184–2185 (1974).
[CrossRef]

Reil, F.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
[CrossRef]

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Rivas, J.

C. Arnold, Y. Zhang, and J. Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

Rivas, J. G.

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range coupled surface exciton polaritons,” Phys. Rev. Lett.64, 559–562 (1990).
[CrossRef] [PubMed]

Schmitz, J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

Seidel, J.

J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett.94, 177401 (2005).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an excited molecule near a metal mirror: Energy transfer in the eu[sup 3 + ]/silver system,” J. Chem. Phys.60, 2184–2185 (1974).
[CrossRef]

Sommerfeld, A.

A. Sommerfeld, “Uber die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. Phys.28, 665–736 (1909).
[CrossRef]

Tobika, P.

G. Nenninger, P. Tobika, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuator B-Chem.74, 145–151 (2001).
[CrossRef]

Ulin-Avila, E.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008).
[CrossRef] [PubMed]

van Loon, R. V. A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon.3, 388–394 (2009).
[CrossRef]

Vincent, G.

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010).
[CrossRef]

Walters, R. J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984).
[CrossRef]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range coupled surface exciton polaritons,” Phys. Rev. Lett.64, 559–562 (1990).
[CrossRef] [PubMed]

Yee, S.

G. Nenninger, P. Tobika, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuator B-Chem.74, 145–151 (2001).
[CrossRef]

Zhang, X.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008).
[CrossRef] [PubMed]

Zhang, Y.

Zhu, G.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Ann. Phys. (1)

A. Sommerfeld, “Uber die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. Phys.28, 665–736 (1909).
[CrossRef]

Appl. Phys. Lett. (2)

R. Haïdar, G. Vincent, S. Collin, N. Bardou, N. Guérineau, J. Deschamps, and J.-L. Pelouard, “Free-standing subwavelength metallic gratings for snapshot multispectral imaging,” Appl. Phys. Lett.96, 221104 (2010).
[CrossRef]

C. Arnold, Y. Zhang, and J. Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010).
[CrossRef]

J. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an excited molecule near a metal mirror: Energy transfer in the eu[sup 3 + ]/silver system,” J. Chem. Phys.60, 2184–2185 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9, 21–25 (2010).
[CrossRef]

Nat. Photon. (5)

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photon.2, 684–687 (2008).
[CrossRef]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon.3, 388–394 (2009).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photon.4, 382–387 (2010).
[CrossRef]

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photon.4, 457–461 (2010).
[CrossRef]

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photon.6, 16–24 (2012).
[CrossRef]

Opt. Express (2)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep.113, 195–287 (1984).
[CrossRef]

Phys. Rev. B (3)

A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B82, 035411 (2010).
[CrossRef]

J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, “Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory,” Phys. Rev. B73, 075317 (2006).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991).
[CrossRef]

Phys. Rev. Lett. (3)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range coupled surface exciton polaritons,” Phys. Rev. Lett.64, 559–562 (1990).
[CrossRef] [PubMed]

J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett.94, 177401 (2005).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Sens. Actuator B-Chem. (1)

G. Nenninger, P. Tobika, J. Homola, and S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuator B-Chem.74, 145–151 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic representation of the field intensity distribution of a LRGM around a thin layer of a strongly absorbing material. (b) Real (solid line) and imaginary components(dash line) of the permitttivity of Ge17Sb76Te7. (c) Schematic representation of the setup. From the top to the bottom of the structure: F2 prism, F2 substrate optically matched to the prism through refractive index matching liquid (not shown), dielectric layer of SiON (300 nm), Ge17Sb76Te7 thin film (25 nm), SiON (100 nm), PMMA layer with dye (90 nm) and PMMA layer (500 nm). For the fluorescence measurements, the dye molecules are pumped from the bottom with a supercontinuum light source and the emission is collected from the side of the prism. For the specular reflectance measurements, the beam from a halogen lamp is incident onto the sample through the prism.

Fig. 2
Fig. 2

(a) and (b) are the measured specular reflectance spectra, normalized to the reference, as a function of the angle on incidence of the multilayered structure for p- and s- polarizations, respectively. (c) and (d) are the calculated reflectance for p- (c) and s- (d) polarizations. The upper insets are the specular reflectance measurements at λ = 650 nm. Permittivity of each layer at 650 nm: εGST = 8.2322 + 20.528i, εPMMA = 2.2103, εSiO2 = 2.1947 and εF2 = 2.6055.

Fig. 3
Fig. 3

(a) and (b) are the measured fluorescence spectra of the dye molecules of the multilayered structure as a function of the angle of emission for p- and s- polarizations respectively. (c) and (d) are the calculated fluorescence spectra for p- and s- polarizations. The upper insets correspond to the fluorescence emission at λ = 650 nm.

Fig. 4
Fig. 4

Decay probability for an isotropically (a) and perpendicularly (b) oriented dipole as a function of the distance of the dipole to the GST thin film. The wavelength is 600 nm and the thickness of the layer is 25 nm. The curves represent the three different decay channels.

Metrics