Abstract

Liquid-crystal (LC) lens with low-voltage (3.5V) driving is reported with the experimental results of lens power, wavefront aberration, storage test and also the imaging test. Optical quality can be estimated by interference pattern under two polarizer plates set with the crossed Nichol position, and the optical quality is certified by the measurement of wavefront aberration. Durable stability of over 1000 hours under continuous driving in high temperature (85°C) environment is also verified and obtained less-damaged interference patterns. Finally a new application of active polarized filter for micro camera with focus control function is reported with sufficient quality of images.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
    [CrossRef]
  2. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt.43(35), 6407–6412 (2004).
    [CrossRef] [PubMed]
  3. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. Vol.49(10), 100204 (2010).
    [CrossRef]
  4. M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys.47(6), 4597–4599 (2008).
    [CrossRef]
  5. M. Ye, B. Wang, and S. Sato, “Effects of dielectric constant of glass substrates on properties of liquid crystal lens,” IEEE Photon. Technol. Lett.19(17), 1295–1297 (2007).
    [CrossRef]
  6. M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys.46(10A), 6776–6777 (2007).
    [CrossRef]
  7. T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys.46(5A), 2926–2931 (2007).
    [CrossRef]
  8. M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1975)
  9. T. Galstian, P. Clark, and S. Venkatraman, “LensVector tunable liquid crystal lens,” EDOM-Express 97, 2011/7/22 EDOM Technology Co.Ltd. http://www.edom.com.tw/en/index.jsp?m=techview&id=1845

2010 (1)

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. Vol.49(10), 100204 (2010).
[CrossRef]

2008 (1)

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys.47(6), 4597–4599 (2008).
[CrossRef]

2007 (3)

M. Ye, B. Wang, and S. Sato, “Effects of dielectric constant of glass substrates on properties of liquid crystal lens,” IEEE Photon. Technol. Lett.19(17), 1295–1297 (2007).
[CrossRef]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys.46(10A), 6776–6777 (2007).
[CrossRef]

T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys.46(5A), 2926–2931 (2007).
[CrossRef]

2004 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
[CrossRef]

Kawamura, M.

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys.46(10A), 6776–6777 (2007).
[CrossRef]

Sato, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. Vol.49(10), 100204 (2010).
[CrossRef]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys.47(6), 4597–4599 (2008).
[CrossRef]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys.46(10A), 6776–6777 (2007).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Effects of dielectric constant of glass substrates on properties of liquid crystal lens,” IEEE Photon. Technol. Lett.19(17), 1295–1297 (2007).
[CrossRef]

T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys.46(5A), 2926–2931 (2007).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt.43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
[CrossRef]

Takahashi, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. Vol.49(10), 100204 (2010).
[CrossRef]

Takahashi, T.

T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys.46(5A), 2926–2931 (2007).
[CrossRef]

Uchida, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. Vol.49(10), 100204 (2010).
[CrossRef]

Wang, B.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. Vol.49(10), 100204 (2010).
[CrossRef]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys.47(6), 4597–4599 (2008).
[CrossRef]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys.46(10A), 6776–6777 (2007).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Effects of dielectric constant of glass substrates on properties of liquid crystal lens,” IEEE Photon. Technol. Lett.19(17), 1295–1297 (2007).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt.43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

Yamaguchi, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. Vol.49(10), 100204 (2010).
[CrossRef]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys.47(6), 4597–4599 (2008).
[CrossRef]

Yanase, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. Vol.49(10), 100204 (2010).
[CrossRef]

Ye, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. Vol.49(10), 100204 (2010).
[CrossRef]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys.47(6), 4597–4599 (2008).
[CrossRef]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys.46(10A), 6776–6777 (2007).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Effects of dielectric constant of glass substrates on properties of liquid crystal lens,” IEEE Photon. Technol. Lett.19(17), 1295–1297 (2007).
[CrossRef]

T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys.46(5A), 2926–2931 (2007).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt.43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

M. Ye, B. Wang, and S. Sato, “Effects of dielectric constant of glass substrates on properties of liquid crystal lens,” IEEE Photon. Technol. Lett.19(17), 1295–1297 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (4)

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys.46(10A), 6776–6777 (2007).
[CrossRef]

T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys.46(5A), 2926–2931 (2007).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
[CrossRef]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys.47(6), 4597–4599 (2008).
[CrossRef]

Jpn. J. Appl. Phys. Vol. (1)

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-voltage-driving liquid crystal lens,” Jpn. J. Appl. Phys. Vol.49(10), 100204 (2010).
[CrossRef]

Other (2)

M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1975)

T. Galstian, P. Clark, and S. Venkatraman, “LensVector tunable liquid crystal lens,” EDOM-Express 97, 2011/7/22 EDOM Technology Co.Ltd. http://www.edom.com.tw/en/index.jsp?m=techview&id=1845

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic structure of LC lens. (a) LC cell structure. (b) Patterned ITO electrode. (c) Photos of manufactured LC cell.

Fig. 2
Fig. 2

Interference patterns and characteristic curves of LC lens at various values of applied AC frequency.

Fig. 3
Fig. 3

Result of the storage test under LC lens driving.

Fig. 4
Fig. 4

(a) Experimental setup of imaging system including LC lens and camera module. (b) Images on near focus. (c) Images on far focus.

Fig. 5
Fig. 5

(a) Summation of wavefront aberration as a function of lens power. (b) Spherical aberration as a function of lens power. (c) Coma aberration as a function of lens power. (d) Astigmatic aberration as a function of lens power.

Fig. 6
Fig. 6

Images of LC polarized filter. (a) Schematic Structure of new LC device. (b) 0.0V applied between electrode 3 and 4. (c) 3.0V applied between electrode 3 and 4.

Metrics