Abstract

We report performance characteristics of a thulium doped ZBLAN waveguide laser that supports the largest fundamental modes reported in a rare-earth doped planar waveguide laser (to the best of our knowledge). The high mode quality of waveguides up to 45 um diameter (~1075 μm2 mode-field area) is validated by a measured beam quality of M2~1.1 ± 0.1. Benefits of these large mode-areas are demonstrated by achieving 1.9 kW peak-power output Q-switched pulses. The 1.89 μm free-running cw laser produces 205 mW and achieves a 67% internal slope efficiency corresponding to a quantum efficiency of 161%. The 9 mm long planar chip developed for concept demonstration is rapidly fabricated by single-step optical processing, contains 15 depressed-cladding waveguides, and can operate in semi-monolithic or external cavity laser configurations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett.29(22), 2626–2628 (2004).
    [CrossRef] [PubMed]
  2. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser & Photon. Rev.3(6), 535–544 (2009).
    [CrossRef]
  3. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Low loss depressed cladding waveguide inscribed in YAG: Nd single crystal by femtosecond laser pulses,” Appl. Phys. B100, 131–135 (2010).
    [CrossRef]
  4. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” IEEE Prog. Quantum Electron.35(6), 159–239 (2011).
    [CrossRef]
  5. J. D. Musgraves, K. Richardson, and J. Jain, “Laser-induced structural modification, its mechanisms, and applications in glassy optical materials,” Opt. Mater. Express1(5), 921–935 (2011).
    [CrossRef]
  6. X. Zhu and N. Peyghambarian, “High power ZBLAN fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
    [CrossRef]
  7. L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids140, 35–40 (1992).
    [CrossRef]
  8. R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Top. Quantum Electron.3(4), 1100–1102 (1997).
    [CrossRef]
  9. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett.34(20), 3062–3064 (2009).
    [CrossRef] [PubMed]
  10. J. Schneider, C. Carbonnier, and U. B. Unrau, “Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength,” Appl. Opt.36(33), 8595–8600 (1997).
    [CrossRef] [PubMed]
  11. D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: A review,” J. Lightwave Technol.2(5), 566–586 (1984).
    [CrossRef]
  12. S. F. Carter, M. W. Moore, D. Szebesta, J. R. Williams, D. Ranson, and P. W. France, “Low loss fluoride fiber by reduced pressure casting,” Electron. Lett.26(25), 2115–2117 (1990).
    [CrossRef]
  13. W. A. Gambling, “The rise and rise of optical fibers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1084–1093 (2000).
    [CrossRef]
  14. J. L. Adam, F. Smektala, and J. Lucas, “Active fluoride glass optical waveguides for laser sources,” Opt. Mater.4(1), 85–90 (1994).
    [CrossRef]
  15. J. Colaizzi and M. J. Matthewson, “Mechanical durability of ZBLAN and aluminum fluoride-based optical fiber,” J. Lightwave Technol.12(8), 1317–1324 (1994).
    [CrossRef]
  16. O. Perrot, L. Guinvarc'h, D. Benhaddou, P. C. Montgomery, R. Rimet, B. Boulard, and C. Jacoboni, “Optical investigation of fluoride glass planar waveguides made by vapour phase deposition,” J. Non-Cryst. Solids184, 257–262 (1995).
    [CrossRef]
  17. J. D. Shephard, D. Furniss, P. A. Houston, and A. B. Seddon, “Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting,” J. Non-Cryst. Solids284(1-3), 160–167 (2001).
    [CrossRef]
  18. M. Waldmann, R. Caspary, D. Wortmann, J. Gottmann, and W. Kowalsky, “Erbium-doped fluoride glass waveguides,” Electron. Lett.44(20), 1193 (2008).
    [CrossRef]
  19. D. W. J. Harwood, A. Fu, E. R. Taylor, R. C. Moore, Y. D. West, and D. N. Payne, “A 1317nm neodymium doped fluoride glass waveguide laser,” ECOC 2000. 26th European Conference on Optical Communication 2, 191–2 (2000)
  20. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011).
    [CrossRef] [PubMed]
  21. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett.37(6), 996–998 (2012).
    [CrossRef] [PubMed]
  22. M. Eichhorn and S. D. Jackson, “Comparative study of continuous wave Tm3+-doped silica and fluoride fiber lasers,” Appl. Phys. B90(1), 35–41 (2008).
    [CrossRef]
  23. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett.37(5), 887–889 (2012).
    [CrossRef] [PubMed]
  24. C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
    [CrossRef]
  25. B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004).
    [CrossRef]
  26. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon.1(1), 58–106 (2009).
    [CrossRef]
  27. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
    [CrossRef]
  28. S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm,” Opt. Lett.34(15), 2327–2329 (2009).
    [CrossRef] [PubMed]

2012 (2)

2011 (3)

2010 (2)

X. Zhu and N. Peyghambarian, “High power ZBLAN fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Low loss depressed cladding waveguide inscribed in YAG: Nd single crystal by femtosecond laser pulses,” Appl. Phys. B100, 131–135 (2010).
[CrossRef]

2009 (4)

2008 (2)

M. Eichhorn and S. D. Jackson, “Comparative study of continuous wave Tm3+-doped silica and fluoride fiber lasers,” Appl. Phys. B90(1), 35–41 (2008).
[CrossRef]

M. Waldmann, R. Caspary, D. Wortmann, J. Gottmann, and W. Kowalsky, “Erbium-doped fluoride glass waveguides,” Electron. Lett.44(20), 1193 (2008).
[CrossRef]

2004 (2)

S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett.29(22), 2626–2628 (2004).
[CrossRef] [PubMed]

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

2003 (1)

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

2001 (1)

J. D. Shephard, D. Furniss, P. A. Houston, and A. B. Seddon, “Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting,” J. Non-Cryst. Solids284(1-3), 160–167 (2001).
[CrossRef]

2000 (1)

W. A. Gambling, “The rise and rise of optical fibers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1084–1093 (2000).
[CrossRef]

1997 (2)

J. Schneider, C. Carbonnier, and U. B. Unrau, “Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength,” Appl. Opt.36(33), 8595–8600 (1997).
[CrossRef] [PubMed]

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Top. Quantum Electron.3(4), 1100–1102 (1997).
[CrossRef]

1995 (1)

O. Perrot, L. Guinvarc'h, D. Benhaddou, P. C. Montgomery, R. Rimet, B. Boulard, and C. Jacoboni, “Optical investigation of fluoride glass planar waveguides made by vapour phase deposition,” J. Non-Cryst. Solids184, 257–262 (1995).
[CrossRef]

1994 (2)

J. L. Adam, F. Smektala, and J. Lucas, “Active fluoride glass optical waveguides for laser sources,” Opt. Mater.4(1), 85–90 (1994).
[CrossRef]

J. Colaizzi and M. J. Matthewson, “Mechanical durability of ZBLAN and aluminum fluoride-based optical fiber,” J. Lightwave Technol.12(8), 1317–1324 (1994).
[CrossRef]

1992 (1)

L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids140, 35–40 (1992).
[CrossRef]

1990 (1)

S. F. Carter, M. W. Moore, D. Szebesta, J. R. Williams, D. Ranson, and P. W. France, “Low loss fluoride fiber by reduced pressure casting,” Electron. Lett.26(25), 2115–2117 (1990).
[CrossRef]

1984 (1)

D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: A review,” J. Lightwave Technol.2(5), 566–586 (1984).
[CrossRef]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

Adam, J. L.

J. L. Adam, F. Smektala, and J. Lucas, “Active fluoride glass optical waveguides for laser sources,” Opt. Mater.4(1), 85–90 (1994).
[CrossRef]

Ams, M.

Aravazhi, S.

Barnes, N. P.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

Bendow, B.

D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: A review,” J. Lightwave Technol.2(5), 566–586 (1984).
[CrossRef]

Benhaddou, D.

O. Perrot, L. Guinvarc'h, D. Benhaddou, P. C. Montgomery, R. Rimet, B. Boulard, and C. Jacoboni, “Optical investigation of fluoride glass planar waveguides made by vapour phase deposition,” J. Non-Cryst. Solids184, 257–262 (1995).
[CrossRef]

Boulard, B.

O. Perrot, L. Guinvarc'h, D. Benhaddou, P. C. Montgomery, R. Rimet, B. Boulard, and C. Jacoboni, “Optical investigation of fluoride glass planar waveguides made by vapour phase deposition,” J. Non-Cryst. Solids184, 257–262 (1995).
[CrossRef]

Calmano, T.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Low loss depressed cladding waveguide inscribed in YAG: Nd single crystal by femtosecond laser pulses,” Appl. Phys. B100, 131–135 (2010).
[CrossRef]

Carbonnier, C.

Carter, S. F.

S. F. Carter, M. W. Moore, D. Szebesta, J. R. Williams, D. Ranson, and P. W. France, “Low loss fluoride fiber by reduced pressure casting,” Electron. Lett.26(25), 2115–2117 (1990).
[CrossRef]

Caspary, R.

M. Waldmann, R. Caspary, D. Wortmann, J. Gottmann, and W. Kowalsky, “Erbium-doped fluoride glass waveguides,” Electron. Lett.44(20), 1193 (2008).
[CrossRef]

Cerullo, G.

Chiodo, N.

Clarkson, W. A.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Top. Quantum Electron.3(4), 1100–1102 (1997).
[CrossRef]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

Colaizzi, J.

J. Colaizzi and M. J. Matthewson, “Mechanical durability of ZBLAN and aluminum fluoride-based optical fiber,” J. Lightwave Technol.12(8), 1317–1324 (1994).
[CrossRef]

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser & Photon. Rev.3(6), 535–544 (2009).
[CrossRef]

Ebendorff-Heidepriem, H.

Eichhorn, M.

M. Eichhorn and S. D. Jackson, “Comparative study of continuous wave Tm3+-doped silica and fluoride fiber lasers,” Appl. Phys. B90(1), 35–41 (2008).
[CrossRef]

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

France, P. W.

S. F. Carter, M. W. Moore, D. Szebesta, J. R. Williams, D. Ranson, and P. W. France, “Low loss fluoride fiber by reduced pressure casting,” Electron. Lett.26(25), 2115–2117 (1990).
[CrossRef]

Fuerbach, A.

Furniss, D.

J. D. Shephard, D. Furniss, P. A. Houston, and A. B. Seddon, “Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting,” J. Non-Cryst. Solids284(1-3), 160–167 (2001).
[CrossRef]

Gambling, W. A.

W. A. Gambling, “The rise and rise of optical fibers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1084–1093 (2000).
[CrossRef]

Garcia, J.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

García-Blanco, S. M.

Gottmann, J.

M. Waldmann, R. Caspary, D. Wortmann, J. Gottmann, and W. Kowalsky, “Erbium-doped fluoride glass waveguides,” Electron. Lett.44(20), 1193 (2008).
[CrossRef]

Grivas, C.

K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett.37(5), 887–889 (2012).
[CrossRef] [PubMed]

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” IEEE Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Gross, S.

Guinvarc'h, L.

O. Perrot, L. Guinvarc'h, D. Benhaddou, P. C. Montgomery, R. Rimet, B. Boulard, and C. Jacoboni, “Optical investigation of fluoride glass planar waveguides made by vapour phase deposition,” J. Non-Cryst. Solids184, 257–262 (1995).
[CrossRef]

Hanna, D. C.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Top. Quantum Electron.3(4), 1100–1102 (1997).
[CrossRef]

Hashida, M.

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Low loss depressed cladding waveguide inscribed in YAG: Nd single crystal by femtosecond laser pulses,” Appl. Phys. B100, 131–135 (2010).
[CrossRef]

Houston, P. A.

J. D. Shephard, D. Furniss, P. A. Houston, and A. B. Seddon, “Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting,” J. Non-Cryst. Solids284(1-3), 160–167 (2001).
[CrossRef]

Hu, J.

Huber, G.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Low loss depressed cladding waveguide inscribed in YAG: Nd single crystal by femtosecond laser pulses,” Appl. Phys. B100, 131–135 (2010).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm,” Opt. Lett.34(15), 2327–2329 (2009).
[CrossRef] [PubMed]

M. Eichhorn and S. D. Jackson, “Comparative study of continuous wave Tm3+-doped silica and fluoride fiber lasers,” Appl. Phys. B90(1), 35–41 (2008).
[CrossRef]

Jacoboni, C.

O. Perrot, L. Guinvarc'h, D. Benhaddou, P. C. Montgomery, R. Rimet, B. Boulard, and C. Jacoboni, “Optical investigation of fluoride glass planar waveguides made by vapour phase deposition,” J. Non-Cryst. Solids184, 257–262 (1995).
[CrossRef]

Jain, J.

Killi, A.

Kopf, D.

Kowalsky, W.

M. Waldmann, R. Caspary, D. Wortmann, J. Gottmann, and W. Kowalsky, “Erbium-doped fluoride glass waveguides,” Electron. Lett.44(20), 1193 (2008).
[CrossRef]

Kuan, K.

Lancaster, D. G.

Laporta, P.

Lederer, M.

Lucas, J.

J. L. Adam, F. Smektala, and J. Lucas, “Active fluoride glass optical waveguides for laser sources,” Opt. Mater.4(1), 85–90 (1994).
[CrossRef]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser & Photon. Rev.3(6), 535–544 (2009).
[CrossRef]

Matthewson, M. J.

J. Colaizzi and M. J. Matthewson, “Mechanical durability of ZBLAN and aluminum fluoride-based optical fiber,” J. Lightwave Technol.12(8), 1317–1324 (1994).
[CrossRef]

Maze, G.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Top. Quantum Electron.3(4), 1100–1102 (1997).
[CrossRef]

Mazur, E.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

Menyuk, C. R.

Monro, T. M.

Montgomery, P. C.

O. Perrot, L. Guinvarc'h, D. Benhaddou, P. C. Montgomery, R. Rimet, B. Boulard, and C. Jacoboni, “Optical investigation of fluoride glass planar waveguides made by vapour phase deposition,” J. Non-Cryst. Solids184, 257–262 (1995).
[CrossRef]

Moore, M. W.

S. F. Carter, M. W. Moore, D. Szebesta, J. R. Williams, D. Ranson, and P. W. France, “Low loss fluoride fiber by reduced pressure casting,” Electron. Lett.26(25), 2115–2117 (1990).
[CrossRef]

Moore, N.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Top. Quantum Electron.3(4), 1100–1102 (1997).
[CrossRef]

Morgner, U.

Murakami, M.

Musgraves, J. D.

Osellame, R.

Paschotta, R.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Top. Quantum Electron.3(4), 1100–1102 (1997).
[CrossRef]

Perrot, O.

O. Perrot, L. Guinvarc'h, D. Benhaddou, P. C. Montgomery, R. Rimet, B. Boulard, and C. Jacoboni, “Optical investigation of fluoride glass planar waveguides made by vapour phase deposition,” J. Non-Cryst. Solids184, 257–262 (1995).
[CrossRef]

Petermann, K.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Low loss depressed cladding waveguide inscribed in YAG: Nd single crystal by femtosecond laser pulses,” Appl. Phys. B100, 131–135 (2010).
[CrossRef]

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High power ZBLAN fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser & Photon. Rev.3(6), 535–544 (2009).
[CrossRef]

Pollnau, M.

Ranson, D.

S. F. Carter, M. W. Moore, D. Szebesta, J. R. Williams, D. Ranson, and P. W. France, “Low loss fluoride fiber by reduced pressure casting,” Electron. Lett.26(25), 2115–2117 (1990).
[CrossRef]

Richardson, K.

Rimet, R.

O. Perrot, L. Guinvarc'h, D. Benhaddou, P. C. Montgomery, R. Rimet, B. Boulard, and C. Jacoboni, “Optical investigation of fluoride glass planar waveguides made by vapour phase deposition,” J. Non-Cryst. Solids184, 257–262 (1995).
[CrossRef]

Sakabe, S.

Schaffer, C.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

Schneider, J.

Seddon, A. B.

J. D. Shephard, D. Furniss, P. A. Houston, and A. B. Seddon, “Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting,” J. Non-Cryst. Solids284(1-3), 160–167 (2001).
[CrossRef]

Shephard, J. D.

J. D. Shephard, D. Furniss, P. A. Houston, and A. B. Seddon, “Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting,” J. Non-Cryst. Solids284(1-3), 160–167 (2001).
[CrossRef]

Shimizu, S.

Siebenmorgen, J.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Low loss depressed cladding waveguide inscribed in YAG: Nd single crystal by femtosecond laser pulses,” Appl. Phys. B100, 131–135 (2010).
[CrossRef]

Sigel, G. H.

D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: A review,” J. Lightwave Technol.2(5), 566–586 (1984).
[CrossRef]

Smektala, F.

J. L. Adam, F. Smektala, and J. Lucas, “Active fluoride glass optical waveguides for laser sources,” Opt. Mater.4(1), 85–90 (1994).
[CrossRef]

Svelto, O.

Szebesta, D.

S. F. Carter, M. W. Moore, D. Szebesta, J. R. Williams, D. Ranson, and P. W. France, “Low loss fluoride fiber by reduced pressure casting,” Electron. Lett.26(25), 2115–2117 (1990).
[CrossRef]

Taccheo, S.

Tobben, H.

L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids140, 35–40 (1992).
[CrossRef]

Tokita, S.

Tran, D. C.

D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: A review,” J. Lightwave Technol.2(5), 566–586 (1984).
[CrossRef]

Tropper, A. C.

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Top. Quantum Electron.3(4), 1100–1102 (1997).
[CrossRef]

Unrau, U. B.

Valle, G. D.

van Dalfsen, K.

Waldmann, M.

M. Waldmann, R. Caspary, D. Wortmann, J. Gottmann, and W. Kowalsky, “Erbium-doped fluoride glass waveguides,” Electron. Lett.44(20), 1193 (2008).
[CrossRef]

Walsh, B. M.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

West, G. F.

L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids140, 35–40 (1992).
[CrossRef]

Wetenkamp, L.

L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids140, 35–40 (1992).
[CrossRef]

Williams, J. R.

S. F. Carter, M. W. Moore, D. Szebesta, J. R. Williams, D. Ranson, and P. W. France, “Low loss fluoride fiber by reduced pressure casting,” Electron. Lett.26(25), 2115–2117 (1990).
[CrossRef]

Withford, M. J.

Wortmann, D.

M. Waldmann, R. Caspary, D. Wortmann, J. Gottmann, and W. Kowalsky, “Erbium-doped fluoride glass waveguides,” Electron. Lett.44(20), 1193 (2008).
[CrossRef]

Zhu, X.

X. Zhu and N. Peyghambarian, “High power ZBLAN fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

Adv. Opt. Photon. (1)

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High power ZBLAN fiber lasers: review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Low loss depressed cladding waveguide inscribed in YAG: Nd single crystal by femtosecond laser pulses,” Appl. Phys. B100, 131–135 (2010).
[CrossRef]

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

M. Eichhorn and S. D. Jackson, “Comparative study of continuous wave Tm3+-doped silica and fluoride fiber lasers,” Appl. Phys. B90(1), 35–41 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process.76(3), 351–354 (2003).
[CrossRef]

Electron. Lett. (2)

S. F. Carter, M. W. Moore, D. Szebesta, J. R. Williams, D. Ranson, and P. W. France, “Low loss fluoride fiber by reduced pressure casting,” Electron. Lett.26(25), 2115–2117 (1990).
[CrossRef]

M. Waldmann, R. Caspary, D. Wortmann, J. Gottmann, and W. Kowalsky, “Erbium-doped fluoride glass waveguides,” Electron. Lett.44(20), 1193 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

W. A. Gambling, “The rise and rise of optical fibers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1084–1093 (2000).
[CrossRef]

R. Paschotta, N. Moore, W. A. Clarkson, A. C. Tropper, D. C. Hanna, and G. Maze, “230 mW of blue light from a thulium-doped upconversion fiber laser,” IEEE J. Sel. Top. Quantum Electron.3(4), 1100–1102 (1997).
[CrossRef]

IEEE Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” IEEE Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

J. Lightwave Technol. (2)

D. C. Tran, G. H. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: A review,” J. Lightwave Technol.2(5), 566–586 (1984).
[CrossRef]

J. Colaizzi and M. J. Matthewson, “Mechanical durability of ZBLAN and aluminum fluoride-based optical fiber,” J. Lightwave Technol.12(8), 1317–1324 (1994).
[CrossRef]

J. Non-Cryst. Solids (3)

O. Perrot, L. Guinvarc'h, D. Benhaddou, P. C. Montgomery, R. Rimet, B. Boulard, and C. Jacoboni, “Optical investigation of fluoride glass planar waveguides made by vapour phase deposition,” J. Non-Cryst. Solids184, 257–262 (1995).
[CrossRef]

J. D. Shephard, D. Furniss, P. A. Houston, and A. B. Seddon, “Fabrication of mid-infrared planar waveguides from compatible fluorozirconate glass pairs, via hot spin-casting,” J. Non-Cryst. Solids284(1-3), 160–167 (2001).
[CrossRef]

L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids140, 35–40 (1992).
[CrossRef]

Laser & Photon. Rev. (1)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser & Photon. Rev.3(6), 535–544 (2009).
[CrossRef]

Opt. Lett. (6)

Opt. Mater. (1)

J. L. Adam, F. Smektala, and J. Lucas, “Active fluoride glass optical waveguides for laser sources,” Opt. Mater.4(1), 85–90 (1994).
[CrossRef]

Opt. Mater. Express (1)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[CrossRef]

Other (1)

D. W. J. Harwood, A. Fu, E. R. Taylor, R. C. Moore, Y. D. West, and D. N. Payne, “A 1317nm neodymium doped fluoride glass waveguide laser,” ECOC 2000. 26th European Conference on Optical Communication 2, 191–2 (2000)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) 2-D and 3-D representations of the depressed cladding waveguide concept; Plot of the idealized depressed cladding refractive index vs. waveguide radius. (b) Microscope image (bottom illumination) of two depressed-cladding waveguides written into thulium doped ZBLAN glass (15 & 45 μm diameters). Each waveguide has a cladding formed by 24 overlapping rods written using 80 nJ pulses (λ = 800 nm), 5.1 MHz repetition rate, 16.7 mm/s translation speed.

Fig. 2
Fig. 2

(a) Predicted confinement loss of the fundamental and first higher order mode at λ = 1.9 μm for a depressed cladding waveguide as a function of waveguide core-radius. (b) Tm:ZBLAN chip containing 15 waveguides with dielectrically-coated end faces.

Fig. 3
Fig. 3

(a) Experimental laser configuration for a semi-monolithic cavity made up of the waveguide chip and an external ‘butted’ discrete output-coupler mirror. (b) Measured laser slope-efficiency for the semi-monolithic waveguide laser in Fig. 3(a). Inset is the collimated output beam profile.

Fig. 4
Fig. 4

(a) Measured mode quality (M2) as a function of waveguide core diameter for the semi-monolithic cavity (b) Experimentally obtained Tm-waveguide laser Q-switching performance using an AO Q-switch in an external cavity. Inset: Representative pulse of τ = 21 ns (FWHM) obtained for at a repetition rate of 2.053 kHz, and E = 38 μJ.

Metrics