Abstract

The spatial resolution of OFDR is normally degraded by the laser phase noise, deviations from linear frequency scan and acoustic noise in the fibers. A method for mitigating these degradation mechanisms, without using an auxiliary interferometer, via inline auxiliary points, is presented and demonstrated experimentally. Auxiliary points are points that are a priori known to have (spatial) impulse reflectivities. Their responses are used for compensating the phase deviations that degrade the response of points that are further away from the source.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Barnoski and S. M. Jensen, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Appl. Opt.15(9), 2112–2115 (1976).
    [CrossRef] [PubMed]
  2. M. Tateda and T. Horiguchi, “Advances in optical time-domain reflectometry,” J. Lightwave Technol.7(8), 1217–1224 (1989).
    [CrossRef]
  3. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
    [CrossRef]
  4. H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol.7(1), 3–10 (1989).
    [CrossRef]
  5. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express13(2), 666–674 (2005).
    [CrossRef] [PubMed]
  6. G. Mussi, N. Gisin, R. Passy, and J. P. von derWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32(10), 926–927 (1996).
    [CrossRef]
  7. S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
    [CrossRef]
  8. X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method,” Opt. Lett.32(22), 3227–3229 (2007).
    [CrossRef] [PubMed]
  9. F. Ito, X. Fan, and Y. Koshikiya, “Long-range coherent OFDR with light source phase noise compensation,” J. Lightwave Technol.30(8), 1015–1024 (2012).
    [CrossRef]
  10. Y. Koshikiya, X. Fan, and F. Ito, “Influence of acoustic perturbation of fibers in phase-noise compensated optical frequency domain reflectometry,” J. Lightwave Technol.28(22), 3323–3328 (2010).

2012 (1)

2010 (1)

2007 (1)

2005 (1)

1996 (1)

G. Mussi, N. Gisin, R. Passy, and J. P. von derWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32(10), 926–927 (1996).
[CrossRef]

1993 (1)

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

1989 (2)

M. Tateda and T. Horiguchi, “Advances in optical time-domain reflectometry,” J. Lightwave Technol.7(8), 1217–1224 (1989).
[CrossRef]

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol.7(1), 3–10 (1989).
[CrossRef]

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

1976 (1)

Barfuss, H.

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol.7(1), 3–10 (1989).
[CrossRef]

Barnoski, M. K.

Brinkmeyer, E.

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol.7(1), 3–10 (1989).
[CrossRef]

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

Fan, X.

Froggatt, M. E.

Gifford, D. K.

Gisin, N.

G. Mussi, N. Gisin, R. Passy, and J. P. von derWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32(10), 926–927 (1996).
[CrossRef]

Horiguchi, T.

M. Tateda and T. Horiguchi, “Advances in optical time-domain reflectometry,” J. Lightwave Technol.7(8), 1217–1224 (1989).
[CrossRef]

Ito, F.

Jensen, S. M.

Koshikiya, Y.

Mussi, G.

G. Mussi, N. Gisin, R. Passy, and J. P. von derWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32(10), 926–927 (1996).
[CrossRef]

Passy, R.

G. Mussi, N. Gisin, R. Passy, and J. P. von derWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32(10), 926–927 (1996).
[CrossRef]

Soller, B. J.

Sorin, W. V.

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

Tateda, M.

M. Tateda and T. Horiguchi, “Advances in optical time-domain reflectometry,” J. Lightwave Technol.7(8), 1217–1224 (1989).
[CrossRef]

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

Venkatesh, S.

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

von derWeid, J. P.

G. Mussi, N. Gisin, R. Passy, and J. P. von derWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32(10), 926–927 (1996).
[CrossRef]

Wolfe, M. S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single-mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

Electron. Lett. (1)

G. Mussi, N. Gisin, R. Passy, and J. P. von derWeid, “−152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett.32(10), 926–927 (1996).
[CrossRef]

J. Lightwave Technol. (5)

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol.7(1), 3–10 (1989).
[CrossRef]

Y. Koshikiya, X. Fan, and F. Ito, “Influence of acoustic perturbation of fibers in phase-noise compensated optical frequency domain reflectometry,” J. Lightwave Technol.28(22), 3323–3328 (2010).

F. Ito, X. Fan, and Y. Koshikiya, “Long-range coherent OFDR with light source phase noise compensation,” J. Lightwave Technol.30(8), 1015–1024 (2012).
[CrossRef]

M. Tateda and T. Horiguchi, “Advances in optical time-domain reflectometry,” J. Lightwave Technol.7(8), 1217–1224 (1989).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental setup.

Fig. 2
Fig. 2

Reflectivity without compensation.

Fig. 3
Fig. 3

Reflectivity after source phase deviation compensation (blue) and before (grey).

Fig. 4
Fig. 4

The reflectivity of the Bragg reflectors after two compensations.

Fig. 5
Fig. 5

The reflectivity of a Bragg reflector after source phase deviation compensation (black), two compensations (blue) and the theoretical limit (red).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E( t )= E 0 exp{ j[ ω 0 t+πγ t 2 +θ( t ) ] }
V( t )=a 0 L r( z' )exp{ j[ 2πγ 2z' v t+φ( t,z' ) ] } dz'
r ˜ ( z )= 1 a 0 T V( t' )exp[ j( 2πγ 2z v t' ) ]dt' = 0 L r( z' ) g ˜ ( z,z' ) dz'.
g ˜ ( z,z' )= 0 T exp{ j[ 2πγ 2( z'z ) v t'+φ( t',z' ) ] }dt' .
r ˜ ˜ ( z )= 1 a 0 T V( t' )exp{ j[ 2πγ 2z v t'+φ( t',z ) ] }dt' = 0 L r( z' ) g ˜ ˜ ( z,z' ) dz'.
g ˜ ˜ ( z,z' )= 0 T exp{ j[ 2πγ 2( z'z ) v t'+φ( t',z' )φ( t',z ) ] }dt' .
V ˜ ( t )=ar( z aux )exp{ j[ 2πγ 2 z aux v t+θ( t )θ( t 2 z aux v ) ] }.
θ ˙ ( t ) θ( t )θ( t τ aux ) τ aux
θ( t )= 0 t θ ˙ ( t )d t 0 t θ( t )θ( t τ aux ) τ aux d t
ψ( t, z aux +Δz )ψ( t 2Δz /v , z aux )+Δψ( t, z aux , z aux +Δz ).

Metrics