Abstract

We demonstrate the generation of 22.6 μJ of combined energy at 3 μm for sub-300fs pulses at a repetition rate of 1 kHz using a LGSe optical parametric amplifier (OPA). The LGSe OPA is pumped by the 140-fs 1.6 μm pulses from a 300-mW KTA optical parametric chirped pulse amplifier (OPCPA) based on an all-optical synchronization scheme. By using a highly-nonlinear fiber, the output of an erbium-doped fiber laser operating at 1560 nm is shifted to 1050 nm in order to coherently seed a Nd:YLF regenerative amplifier. The LGSe OPA is seeded using the MIR coming from the amplification of the 1.6 μm in the OPCPA.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Woutersen, U. Emmerichs, and H. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure,” Science278, 658–660 (1997).
    [CrossRef]
  2. P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett.81, 5326–5329 (1998).
    [CrossRef]
  3. M. Cowan, B. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
    [CrossRef] [PubMed]
  4. L. Szyc, J. R. Dwyer, E. T. J. Nibbering, and T. Elsaesser, “Ultrafast dynamics of N-H and O-H stretching excitations in hydrated DNA oligomers,” Chem. Phys.357, 36–44 (2009).
    [CrossRef]
  5. K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509 (2011).
    [CrossRef] [PubMed]
  6. P. Hamm, R. Kaindl, and J. Stenger, “Noise suppression in femtosecond mid-infrared light sources,” Opt. Lett.25, 1798–1800 (2000).
    [CrossRef]
  7. R. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B17, 2086–2094 (2000).
    [CrossRef]
  8. F. Morin, F. Druon, M. Hanna, and P. Georges, “Microjoule femtosecond fiber laser at 1.6 μm for corneal surgery applications,” Opt. Lett.34, 1991–1993 (2009).
    [CrossRef] [PubMed]
  9. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett.34, 2459–2461 (2009).
    [CrossRef] [PubMed]
  10. J. Rudd, R. Law, T. Luk, and S. Cameron, “High-power optical parametric chirped-pulse amplifier system with a 1.55 μm signal and a 1.064 μm pump,” Opt. Lett.30, 1974–1976 (2005).
    [CrossRef] [PubMed]
  11. D. Kraemer, M. L. Cowan, R. Hua, K. Franjic, and R. D. Miller, “High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B24, 813–818 (2007).
    [CrossRef]
  12. O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8 μJ at 100 kHz,” Opt. Lett.35, 3204–3206 (2010).
    [CrossRef] [PubMed]
  13. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett.35, 2340–2342 (2010).
    [CrossRef] [PubMed]
  14. X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, “Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 2.1-μm carrier wavelength,” Opt. Express17, 62–69 (2009).
    [CrossRef] [PubMed]
  15. G. Andriukaitis, T. Balciunas, S. Alisauskas, A. Pugzlys, A. Baltuska, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett.36, 2755–2757 (2011).
    [CrossRef] [PubMed]
  16. R. Shelton, S. Foreman, L. Ma, J. Hall, H. Kapteyn, M. Murnane, M. Notcutt, and J. Ye, “Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers,” Opt. Lett.27, 312–314 (2002).
    [CrossRef]
  17. K.-H. Hong, S.-W. Huang, J. Moses, X. Fu, C.-J. Lai, G. Cirmi, A. Sell, E. Granados, P. Keathley, and F. X. Kaertner, “High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1 μm pumped by a picosecond cryogenic Yb:YAG laser,” Opt. Express19, 15538–15548 (2011).
    [CrossRef] [PubMed]
  18. C. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Kohler, R. Holzwarth, A. Baltuska, A. Zheltikov, and F. Krausz, “Soliton-based pump-seed synchronization for few-cycle OPCPA,” Opt. Express13, 6550–6557 (2005).
    [CrossRef] [PubMed]
  19. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser,” Opt. Lett.32, 3504–3506 (2007).
    [CrossRef] [PubMed]
  20. A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express17, 1070–1077 (2009).
    [CrossRef] [PubMed]
  21. S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett.37, 554–556 (2012).
    [CrossRef] [PubMed]
  22. R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A17, 1448–1453 (1978).
    [CrossRef]
  23. S. Witte, R. Zinkstok, A. Wolf, W. Hogervorst, W. Ubachs, and K. Eikema, “A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification,” Opt. Express14, 8168–8177 (2006).
    [CrossRef] [PubMed]
  24. L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B = In, Ga; C=S, Se, Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids352, 2439–2443 (2006). 1st Conference on Advances in Optical Materials (AIOM), Tucson, AZ, OCT 12–15, 2005.
    [CrossRef]
  25. T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using aggas2 crystal,” Appl. Phys. Lett.44, 383–385 (1984).
    [CrossRef]
  26. T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B-Laser O.70, S239–S246 (2000). Ultrafast Optics 1999 Meeting, Ctr, Stefano Franscini, Ascona, Switzerland, July 12–16, 1999.
    [CrossRef]
  27. X. ’Fu, Q. Liu, X. Yan, J. Cui, and M. Gong, “1 mJ, 500 kHz Nd:YAG/Nd:YVO4 MOPA laser with a Nd:YAG cavity-dumping seed laser,” Laser Phys.20, 1707–1711 (2010).
    [CrossRef]
  28. M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Haedrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tuennermann, J. Rossbach, M. Drescher, and F. Tavella, “Yb:YAG innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett.36, 2456–2458 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (4)

2010 (3)

2009 (5)

2007 (2)

2006 (2)

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B = In, Ga; C=S, Se, Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids352, 2439–2443 (2006). 1st Conference on Advances in Optical Materials (AIOM), Tucson, AZ, OCT 12–15, 2005.
[CrossRef]

S. Witte, R. Zinkstok, A. Wolf, W. Hogervorst, W. Ubachs, and K. Eikema, “A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification,” Opt. Express14, 8168–8177 (2006).
[CrossRef] [PubMed]

2005 (3)

2002 (1)

2000 (3)

1998 (1)

P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett.81, 5326–5329 (1998).
[CrossRef]

1997 (1)

S. Woutersen, U. Emmerichs, and H. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure,” Science278, 658–660 (1997).
[CrossRef]

1984 (1)

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using aggas2 crystal,” Appl. Phys. Lett.44, 383–385 (1984).
[CrossRef]

1978 (1)

R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A17, 1448–1453 (1978).
[CrossRef]

’Fu, X.

X. ’Fu, Q. Liu, X. Yan, J. Cui, and M. Gong, “1 mJ, 500 kHz Nd:YAG/Nd:YVO4 MOPA laser with a Nd:YAG cavity-dumping seed laser,” Laser Phys.20, 1707–1711 (2010).
[CrossRef]

Adler, F.

Alisauskas, S.

Andriukaitis, G.

Bakker, H.

S. Woutersen, U. Emmerichs, and H. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure,” Science278, 658–660 (1997).
[CrossRef]

Balciunas, T.

Baltuska, A.

Bates, P. K.

Biegert, J.

Brandt, G.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using aggas2 crystal,” Appl. Phys. Lett.44, 383–385 (1984).
[CrossRef]

Brida, D.

Bruner, B.

M. Cowan, B. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef] [PubMed]

Butkus, R.

Cameron, S.

Chalus, O.

Chen, M.-C.

Chugh, B.

M. Cowan, B. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef] [PubMed]

Cirmi, G.

Cowan, M.

M. Cowan, B. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef] [PubMed]

Cowan, M. L.

Cui, J.

X. ’Fu, Q. Liu, X. Yan, J. Cui, and M. Gong, “1 mJ, 500 kHz Nd:YAG/Nd:YVO4 MOPA laser with a Nd:YAG cavity-dumping seed laser,” Laser Phys.20, 1707–1711 (2010).
[CrossRef]

Demirbas, U.

Deng, Y.

Dolkemeyer, J.

Drescher, M.

Druon, F.

Duesterer, S.

Dwyer, J.

M. Cowan, B. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef] [PubMed]

Dwyer, J. R.

L. Szyc, J. R. Dwyer, E. T. J. Nibbering, and T. Elsaesser, “Ultrafast dynamics of N-H and O-H stretching excitations in hydrated DNA oligomers,” Chem. Phys.357, 36–44 (2009).
[CrossRef]

Eikema, K.

Elsaesser, T.

L. Szyc, J. R. Dwyer, E. T. J. Nibbering, and T. Elsaesser, “Ultrafast dynamics of N-H and O-H stretching excitations in hydrated DNA oligomers,” Chem. Phys.357, 36–44 (2009).
[CrossRef]

M. Cowan, B. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef] [PubMed]

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using aggas2 crystal,” Appl. Phys. Lett.44, 383–385 (1984).
[CrossRef]

Emmerichs, U.

S. Woutersen, U. Emmerichs, and H. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure,” Science278, 658–660 (1997).
[CrossRef]

Faatz, B.

Fehrenbacher, D.

Fejer, M. M.

Feldhaus, J.

Foreman, S.

Franjic, K.

Fu, X.

Fuji, T.

Gallmann, L.

Georges, P.

Gong, M.

X. ’Fu, Q. Liu, X. Yan, J. Cui, and M. Gong, “1 mJ, 500 kHz Nd:YAG/Nd:YVO4 MOPA laser with a Nd:YAG cavity-dumping seed laser,” Laser Phys.20, 1707–1711 (2010).
[CrossRef]

Gottschall, T.

Granados, E.

Gu, X.

Haedrich, S.

Hall, J.

Hamm, P.

Hanna, M.

Heese, C.

Herrmann, D.

Hochstrasser, R.

P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett.81, 5326–5329 (1998).
[CrossRef]

Hogervorst, W.

Holzwarth, R.

Hong, K.-H.

Hua, R.

Huang, S.-W.

Huber, R.

Huse, N.

M. Cowan, B. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef] [PubMed]

Isaenko, L.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B = In, Ga; C=S, Se, Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids352, 2439–2443 (2006). 1st Conference on Advances in Optical Materials (AIOM), Tucson, AZ, OCT 12–15, 2005.
[CrossRef]

Ishii, N.

Ishizuki, H.

Kaertner, F. X.

Kaindl, R.

Kaiser, W.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using aggas2 crystal,” Appl. Phys. Lett.44, 383–385 (1984).
[CrossRef]

Kapteyn, H.

Kapteyn, H. C.

Keathley, P.

Keller, U.

Kienberger, R.

Kobayashi, T.

X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, “Generation of carrier-envelope-phase-stable 2-cycle 740-μJ pulses at 2.1-μm carrier wavelength,” Opt. Express17, 62–69 (2009).
[CrossRef] [PubMed]

T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B-Laser O.70, S239–S246 (2000). Ultrafast Optics 1999 Meeting, Ctr, Stefano Franscini, Ascona, Switzerland, July 12–16, 1999.
[CrossRef]

Kohler, S.

Koidl, P.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using aggas2 crystal,” Appl. Phys. Lett.44, 383–385 (1984).
[CrossRef]

Kraemer, D.

Krauss, G.

Krausz, F.

Krinitsin, P.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B = In, Ga; C=S, Se, Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids352, 2439–2443 (2006). 1st Conference on Advances in Optical Materials (AIOM), Tucson, AZ, OCT 12–15, 2005.
[CrossRef]

Kumkar, S.

Lai, C.-J.

Law, R.

Leitenstorfer, A.

Lim, M.

P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett.81, 5326–5329 (1998).
[CrossRef]

Limpert, J.

Lin, C.

R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A17, 1448–1453 (1978).
[CrossRef]

Liu, Q.

X. ’Fu, Q. Liu, X. Yan, J. Cui, and M. Gong, “1 mJ, 500 kHz Nd:YAG/Nd:YVO4 MOPA laser with a Nd:YAG cavity-dumping seed laser,” Laser Phys.20, 1707–1711 (2010).
[CrossRef]

Lobanov, S.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B = In, Ga; C=S, Se, Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids352, 2439–2443 (2006). 1st Conference on Advances in Optical Materials (AIOM), Tucson, AZ, OCT 12–15, 2005.
[CrossRef]

Luk, T.

Ma, L.

Mandal, A.

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509 (2011).
[CrossRef] [PubMed]

Mans, T.

Marcus, G.

Metzger, T.

Miller, R.

M. Cowan, B. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef] [PubMed]

Miller, R. D.

Morin, F.

Moses, J.

Murnane, M.

Murnane, M. M.

Nibbering, E.

M. Cowan, B. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef] [PubMed]

Nibbering, E. T. J.

L. Szyc, J. R. Dwyer, E. T. J. Nibbering, and T. Elsaesser, “Ultrafast dynamics of N-H and O-H stretching excitations in hydrated DNA oligomers,” Chem. Phys.357, 36–44 (2009).
[CrossRef]

Nicodemus, R. A.

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509 (2011).
[CrossRef] [PubMed]

Notcutt, M.

Pervak, V.

Petrov, V.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B = In, Ga; C=S, Se, Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids352, 2439–2443 (2006). 1st Conference on Advances in Optical Materials (AIOM), Tucson, AZ, OCT 12–15, 2005.
[CrossRef]

Phillips, C. R.

Popmintchev, T.

Pugzlys, A.

Ramasesha, K.

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509 (2011).
[CrossRef] [PubMed]

Reimann, K.

Riedel, R.

Roberts, S. T.

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509 (2011).
[CrossRef] [PubMed]

Rossbach, J.

Rudd, J.

Russbueldt, P.

Scheu, R.

Schlarb, H.

Schmid, K.

Schnitzler, C.

Schulz, M.

Seilmeier, A.

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using aggas2 crystal,” Appl. Phys. Lett.44, 383–385 (1984).
[CrossRef]

Seise, E.

Sell, A.

Shelton, R.

Shirakawa, A.

T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B-Laser O.70, S239–S246 (2000). Ultrafast Optics 1999 Meeting, Ctr, Stefano Franscini, Ascona, Switzerland, July 12–16, 1999.
[CrossRef]

Sotier, F.

Stenger, J.

Stolen, R.

R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A17, 1448–1453 (1978).
[CrossRef]

Szyc, L.

L. Szyc, J. R. Dwyer, E. T. J. Nibbering, and T. Elsaesser, “Ultrafast dynamics of N-H and O-H stretching excitations in hydrated DNA oligomers,” Chem. Phys.357, 36–44 (2009).
[CrossRef]

Taira, T.

Tautz, R.

Tavella, F.

Teisset, C.

Thai, A.

Tokmakoff, A.

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509 (2011).
[CrossRef] [PubMed]

Tuennermann, A.

Ubachs, W.

Veisz, L.

Weiner, A.

Willner, A.

Witte, S.

Woerner, M.

Wolf, A.

Woutersen, S.

S. Woutersen, U. Emmerichs, and H. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure,” Science278, 658–660 (1997).
[CrossRef]

Wunram, M.

Wurm, M.

Yan, X.

X. ’Fu, Q. Liu, X. Yan, J. Cui, and M. Gong, “1 mJ, 500 kHz Nd:YAG/Nd:YVO4 MOPA laser with a Nd:YAG cavity-dumping seed laser,” Laser Phys.20, 1707–1711 (2010).
[CrossRef]

Ye, J.

Yelisseyev, A.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B = In, Ga; C=S, Se, Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids352, 2439–2443 (2006). 1st Conference on Advances in Optical Materials (AIOM), Tucson, AZ, OCT 12–15, 2005.
[CrossRef]

Zheltikov, A.

Zinkstok, R.

Zondy, J. J.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B = In, Ga; C=S, Se, Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids352, 2439–2443 (2006). 1st Conference on Advances in Optical Materials (AIOM), Tucson, AZ, OCT 12–15, 2005.
[CrossRef]

Appl. Phys. B-Laser O. (1)

T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B-Laser O.70, S239–S246 (2000). Ultrafast Optics 1999 Meeting, Ctr, Stefano Franscini, Ascona, Switzerland, July 12–16, 1999.
[CrossRef]

Appl. Phys. Lett. (1)

T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and G. Brandt, “Parametric generation of tunable picosecond pulses in the medium infrared using aggas2 crystal,” Appl. Phys. Lett.44, 383–385 (1984).
[CrossRef]

Chem. Phys. (1)

L. Szyc, J. R. Dwyer, E. T. J. Nibbering, and T. Elsaesser, “Ultrafast dynamics of N-H and O-H stretching excitations in hydrated DNA oligomers,” Chem. Phys.357, 36–44 (2009).
[CrossRef]

J. Chem. Phys. (1)

K. Ramasesha, S. T. Roberts, R. A. Nicodemus, A. Mandal, and A. Tokmakoff, “Ultrafast 2D IR anisotropy of water reveals reorientation during hydrogen-bond switching,” J. Chem. Phys.135, 054509 (2011).
[CrossRef] [PubMed]

J. Non-Cryst. Solids (1)

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J. J. Zondy, “Ternary chalcogenides LiBC2 (B = In, Ga; C=S, Se, Te) for mid-IR nonlinear optics,” J. Non-Cryst. Solids352, 2439–2443 (2006). 1st Conference on Advances in Optical Materials (AIOM), Tucson, AZ, OCT 12–15, 2005.
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

X. ’Fu, Q. Liu, X. Yan, J. Cui, and M. Gong, “1 mJ, 500 kHz Nd:YAG/Nd:YVO4 MOPA laser with a Nd:YAG cavity-dumping seed laser,” Laser Phys.20, 1707–1711 (2010).
[CrossRef]

Nature (1)

M. Cowan, B. Bruner, N. Huse, J. Dwyer, B. Chugh, E. Nibbering, T. Elsaesser, and R. Miller, “Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O,” Nature434, 199–202 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (11)

S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett.37, 554–556 (2012).
[CrossRef] [PubMed]

F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser,” Opt. Lett.32, 3504–3506 (2007).
[CrossRef] [PubMed]

G. Andriukaitis, T. Balciunas, S. Alisauskas, A. Pugzlys, A. Baltuska, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett.36, 2755–2757 (2011).
[CrossRef] [PubMed]

R. Shelton, S. Foreman, L. Ma, J. Hall, H. Kapteyn, M. Murnane, M. Notcutt, and J. Ye, “Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers,” Opt. Lett.27, 312–314 (2002).
[CrossRef]

O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8 μJ at 100 kHz,” Opt. Lett.35, 3204–3206 (2010).
[CrossRef] [PubMed]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett.35, 2340–2342 (2010).
[CrossRef] [PubMed]

F. Morin, F. Druon, M. Hanna, and P. Georges, “Microjoule femtosecond fiber laser at 1.6 μm for corneal surgery applications,” Opt. Lett.34, 1991–1993 (2009).
[CrossRef] [PubMed]

D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett.34, 2459–2461 (2009).
[CrossRef] [PubMed]

J. Rudd, R. Law, T. Luk, and S. Cameron, “High-power optical parametric chirped-pulse amplifier system with a 1.55 μm signal and a 1.064 μm pump,” Opt. Lett.30, 1974–1976 (2005).
[CrossRef] [PubMed]

P. Hamm, R. Kaindl, and J. Stenger, “Noise suppression in femtosecond mid-infrared light sources,” Opt. Lett.25, 1798–1800 (2000).
[CrossRef]

M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Haedrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tuennermann, J. Rossbach, M. Drescher, and F. Tavella, “Yb:YAG innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett.36, 2456–2458 (2011).
[CrossRef] [PubMed]

Phys. Rev. A (1)

R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A17, 1448–1453 (1978).
[CrossRef]

Phys. Rev. Lett. (1)

P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett.81, 5326–5329 (1998).
[CrossRef]

Science (1)

S. Woutersen, U. Emmerichs, and H. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: Evidence for a two-component structure,” Science278, 658–660 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The OPCPA layout. Detailed description of each part can be found in the text. EDFA, erbium-doped fiber amplifier; HNLF, highly nonlinear fiber; G1, G2, G3, gratings; SM, spherical mirror; RR, retroreflector; BD, beam dump.

Fig. 2
Fig. 2

Characteristics of the HNLF. On the left, the dispersion curves for the PF and for HNLF. On the right, spectrum around 1 μm at the output of the HNLF.

Fig. 3
Fig. 3

Retrieved temporal electric field using a SHG-FROG. The pulse duration is estimated to be 140 fs.

Fig. 4
Fig. 4

The angular compensation setup. The idler is picked up after the second pass in the first crystal of the OPCPA.

Fig. 5
Fig. 5

Beam profiles at the focal plane of the cylindrical mirror. The vertical axis represents the spread in wavelength. For the uncompensated beam, on the left, the chirp is clearly visible, as the different frequencies have a different spatial position. For the compensated beam, on the right, there is still some chirp; however it is a lot less. The input profile of the beam is shown in the inset; the range for both axis is −3 mm to 3 mm.

Fig. 6
Fig. 6

MIR OPA setup.

Fig. 7
Fig. 7

MIR autocorrelation traces for the signal, on the left, and for the idler, on the right. From those traces, the retrieved FWMH pulse-width for the signal is 291 fs and 233 fs for the idler. The spectrum is shown in the inset.

Metrics