Abstract

We present a theoretical model on the effects of mechanical perturbations on the output power instability of singly-resonant optical parametric oscillators (SR-OPOs). Numerical simulations are performed based on real experimental parameters associated with a SR-OPO designed in our laboratory, which uses periodically-poled LiNbO3 (PPLN) as the nonlinear crystal, where the results of the theoretical model are compared with the measurements. The out-coupled power instability is simulated for a wide range of input pump powers the SR-OPO oscillation threshold. From the results, maximum instability is found to occur at an input pump power of ~1.5 times above the OPO threshold. It is also shown theoretically that the idler instability is susceptible to variations in the cavity length caused by vibrations, with longer cavities capable of generating more stable output power. The validity of the theoretical model is verified experimentally by using a mechanical vibrator in order to vary the SR-OPO resonator length over one cavity mode spacing. It is found that at 1.62 times threshold, the out-coupled idler suffers maximum instability. The results of experimental measurements confirm good agreement with the theoretical model. An intracavity etalon is finally used to improve the idler output power by a factor of ~2.2 at an input pump power of 1.79 times oscillation threshold.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-C. Chen, C.-Y. Hsiao, W.-J. Ting, S.-T. Lin, and J.-T. Shy, “Saturation spectroscopy of CO2 and frequency stabilization of an optical parametric oscillator at 2.77 μm,” Opt. Lett.37(12), 2409–2411 (2012).
    [CrossRef] [PubMed]
  2. J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett.34(9), 1309–1311 (2009).
    [CrossRef] [PubMed]
  3. D. D. Arslanov, K. Swinkels, S. M. Cristescu, and F. J. M. Harren, “Real-time, subsecond, multicomponent breath analysis by Optical Parametric Oscillator based Off-Axis Integrated Cavity Output Spectroscopy,” Opt. Express19(24), 24078–24089 (2011).
    [CrossRef] [PubMed]
  4. M. Ebrahim-Zadeh, Mid-Infrared Optical Parametric Oscillators and Applications Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2008), pp. 347–375.
  5. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett.21(10), 713–715 (1996).
    [CrossRef] [PubMed]
  6. E. Andrieux, T. Zanon, M. Cadoret, A. Rihan, and J.-J. Zondy, “500 GHz mode-hop-free idler tuning range with a frequency-stabilized singly resonant optical parametric oscillator,” Opt. Lett.36(7), 1212–1214 (2011).
    [CrossRef] [PubMed]
  7. M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett.36(21), 4122–4124 (2011).
    [CrossRef] [PubMed]
  8. S. Chaitanya Kumar, R. Das, G. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
    [CrossRef]
  9. F. Müller, G. von Basum, A. Popp, D. Halmer, P. Hering, M. Mürtz, F. Kühnemann, and S. Schiller, “Long-term frequency stability and linewidth properties of continuous-wave pump-resonant optical parametric oscillators,” Appl. Phys. B80, 307–313 (2005).
    [CrossRef]
  10. L. B. Kreuzer, “Single and multi-mode oscillation of the singly resonant optical parametric oscillator,” in Proceedings of the Joint Conference on Lasers and Opto-Electronics, 1969), 52–63.
  11. C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B27(12), 2687–2699 (2010).
    [CrossRef]
  12. C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B73(3), 195–200 (2001).
    [CrossRef]
  13. S. T. Yang, R. C. Eckardt, and R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. Am. B10(9), 1684–1695 (1993).
    [CrossRef]
  14. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997).
    [CrossRef] [PubMed]

2012 (1)

2011 (4)

2010 (1)

2009 (1)

2005 (1)

F. Müller, G. von Basum, A. Popp, D. Halmer, P. Hering, M. Mürtz, F. Kühnemann, and S. Schiller, “Long-term frequency stability and linewidth properties of continuous-wave pump-resonant optical parametric oscillators,” Appl. Phys. B80, 307–313 (2005).
[CrossRef]

2001 (1)

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B73(3), 195–200 (2001).
[CrossRef]

1997 (1)

1996 (1)

1993 (1)

Alexander, J. I.

Andrieux, E.

Arslanov, D. D.

Bosenberg, W. R.

Byer, R. L.

Cadoret, M.

Chaitanya Kumar, S.

S. Chaitanya Kumar, R. Das, G. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

Chen, H.-C.

Cristescu, S. M.

Das, R.

S. Chaitanya Kumar, R. Das, G. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

Drag, C.

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B73(3), 195–200 (2001).
[CrossRef]

Drobshoff, A.

Ebrahim-Zadeh, M.

S. Chaitanya Kumar, R. Das, G. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

Eckardt, R. C.

Fejer, M. M.

Gord, J. R.

Halmer, D.

F. Müller, G. von Basum, A. Popp, D. Halmer, P. Hering, M. Mürtz, F. Kühnemann, and S. Schiller, “Long-term frequency stability and linewidth properties of continuous-wave pump-resonant optical parametric oscillators,” Appl. Phys. B80, 307–313 (2005).
[CrossRef]

Halonen, L.

Harren, F. J. M.

Hering, P.

F. Müller, G. von Basum, A. Popp, D. Halmer, P. Hering, M. Mürtz, F. Kühnemann, and S. Schiller, “Long-term frequency stability and linewidth properties of continuous-wave pump-resonant optical parametric oscillators,” Appl. Phys. B80, 307–313 (2005).
[CrossRef]

Hsiao, C.-Y.

Jeandron, M.

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B73(3), 195–200 (2001).
[CrossRef]

Jiang, N.

Jundt, D. H.

Kühnemann, F.

F. Müller, G. von Basum, A. Popp, D. Halmer, P. Hering, M. Mürtz, F. Kühnemann, and S. Schiller, “Long-term frequency stability and linewidth properties of continuous-wave pump-resonant optical parametric oscillators,” Appl. Phys. B80, 307–313 (2005).
[CrossRef]

Lefebvre, M.

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B73(3), 195–200 (2001).
[CrossRef]

Lempert, W. R.

Lin, S.-T.

Merimaa, M.

Meyer, T. R.

Miller, J. D.

Müller, F.

F. Müller, G. von Basum, A. Popp, D. Halmer, P. Hering, M. Mürtz, F. Kühnemann, and S. Schiller, “Long-term frequency stability and linewidth properties of continuous-wave pump-resonant optical parametric oscillators,” Appl. Phys. B80, 307–313 (2005).
[CrossRef]

Mürtz, M.

F. Müller, G. von Basum, A. Popp, D. Halmer, P. Hering, M. Mürtz, F. Kühnemann, and S. Schiller, “Long-term frequency stability and linewidth properties of continuous-wave pump-resonant optical parametric oscillators,” Appl. Phys. B80, 307–313 (2005).
[CrossRef]

Myers, L. E.

Phillips, C. R.

Popp, A.

F. Müller, G. von Basum, A. Popp, D. Halmer, P. Hering, M. Mürtz, F. Kühnemann, and S. Schiller, “Long-term frequency stability and linewidth properties of continuous-wave pump-resonant optical parametric oscillators,” Appl. Phys. B80, 307–313 (2005).
[CrossRef]

Ribet, I.

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B73(3), 195–200 (2001).
[CrossRef]

Rihan, A.

Rosencher, E.

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B73(3), 195–200 (2001).
[CrossRef]

Samanta, G.

S. Chaitanya Kumar, R. Das, G. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

Schiller, S.

F. Müller, G. von Basum, A. Popp, D. Halmer, P. Hering, M. Mürtz, F. Kühnemann, and S. Schiller, “Long-term frequency stability and linewidth properties of continuous-wave pump-resonant optical parametric oscillators,” Appl. Phys. B80, 307–313 (2005).
[CrossRef]

Shy, J.-T.

Slipchenko, M.

Swinkels, K.

Ting, W.-J.

Vainio, M.

von Basum, G.

F. Müller, G. von Basum, A. Popp, D. Halmer, P. Hering, M. Mürtz, F. Kühnemann, and S. Schiller, “Long-term frequency stability and linewidth properties of continuous-wave pump-resonant optical parametric oscillators,” Appl. Phys. B80, 307–313 (2005).
[CrossRef]

Yang, S. T.

Zanon, T.

Zondy, J.-J.

Appl. Phys. B (3)

S. Chaitanya Kumar, R. Das, G. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B102(1), 31–35 (2011).
[CrossRef]

F. Müller, G. von Basum, A. Popp, D. Halmer, P. Hering, M. Mürtz, F. Kühnemann, and S. Schiller, “Long-term frequency stability and linewidth properties of continuous-wave pump-resonant optical parametric oscillators,” Appl. Phys. B80, 307–313 (2005).
[CrossRef]

C. Drag, I. Ribet, M. Jeandron, M. Lefebvre, and E. Rosencher, “Temporal behavior of a high repetition rate infrared optical parametric oscillator based on periodically poled materials,” Appl. Phys. B73(3), 195–200 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (6)

Other (2)

L. B. Kreuzer, “Single and multi-mode oscillation of the singly resonant optical parametric oscillator,” in Proceedings of the Joint Conference on Lasers and Opto-Electronics, 1969), 52–63.

M. Ebrahim-Zadeh, Mid-Infrared Optical Parametric Oscillators and Applications Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds. (Springer, 2008), pp. 347–375.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of a typical SR-OPO arrangement to correlate the output instabilities with the mechanical vibrations on the out-coupling mirror, M2, through changing the resonator length by δL. According to the preceding assumptions only the signal is resonant inside the cavity of variable length.

Fig. 2
Fig. 2

Simulated idler output power instability of SR-OPO as a function of pump power above threshold for various reflectivity values of the out-coupling mirror, M2. Calculation is performed in the vicinity of the OPO threshold for each reflectivity value. The inset shows that at the reflectivity of 95% the level of the input pump power reduces to the lowest value at 1.44 times the threshold.

Fig. 3
Fig. 3

Simulated idler output power instability of SR-OPO at pump powers beyond 3 times above threshold for various reflectivity values of the out-coupling mirror, M2.The plot shows that with increasing input pump powers the instabilities are substantially suppressed.

Fig. 4
Fig. 4

Simulated idler output power instability as a function of input pump power above threshold for four different SR-OPO cavity lengths. The reflectivity of the output mirror, M2, is assumed to be 99.9%, the same value as used in our experiments.

Fig. 5
Fig. 5

Simulated idler output power instability at input pump power beyond 3 times above threshold for four different SR-OPO cavity lengths. The reflectivity of the M2 mirror is assumed to be 99.9% for the calculation, the same value as used in our experiments.

Fig. 6
Fig. 6

Variation of the idler output power instability for different reflectivities of the out-coupling mirror, M2, while δL is varied up to one cavity mode spacing [FSR (free spectral range) = 0.3GHz]. It is assumed that input pump is fixed to provide power equal to 3 times the SR-OPO threshold.

Fig. 7
Fig. 7

Instability variations for 1, 3, 7 and 9 multiples of threshold provided by different level of SR-OPO pumping versus the resonator length deviation δL that is scanned up to one cavity mode spacing [FSR (free spectral range) = 0.3GHz ]. All plots correspond to an output mirror reflectivity of 99.9%.

Fig. 8
Fig. 8

Experimental setup of a SR-OPO based on a 40-mm-long PPLN crystal used for the characterization of output power instability and comparison with simulation results.

Fig. 9
Fig. 9

Measured SR-OPO idler output power instability monitored with and without using the mechanical vibrator. The maximum instability is observed at 1.62 times above threshold.

Fig. 10
Fig. 10

SR-OPO output instability S(P) with and without intracavity etalon. Input Nd:YAG pump power is gradually increased up to 4 times the threshold, and maximum instability is simultaneously recorded.

Fig. 11
Fig. 11

Long-term power fluctuation around the idler average power with SR-OPO operating 3 times the threshold in (a): and 1.62 times the threshold in (b). Short-term power instability over about 30 sec is shown in (c).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d E p dz =i 2 d eff ω p c n p E s E i e iΔkz ,
d E s dz =i 2 d eff ω s c n s E p E i * e iΔkz ,
d E i dz =i 2 d eff ω i c n i E p E s * e iΔkz ,
Δk=2π( n p λ p n s λ s n i λ i 1 Λ ),
d A p dζ =iσ A s A i e iΔsζ ,
d A s dζ =iβσ A p A i * e iΔsζ ,
d A i dζ =i(1β)σ A p A s * e iΔsζ ,
E s (x,y,z=0)=r E s (x,y,z= L c ) e ϕ RT ,
ϕ RT = 4π n s λ s L c + 4π λ s (L L c )=2mπ,
λ s = (L+δL L c )+ n s L c (L L c )+ n s L c λ s .
Δη= [η(Δk=0)η(Δk( λ s )0)] η(Δk=0) .
S(P)= m=1 N ( P m P ¯ ) 2 N1 ,

Metrics