Abstract

Integration density, channel scalability, low switching energy and low insertion loss are the major prerequisites for on-chip WDM systems. A number of device geometries have already been demonstrated that fulfill these criteria, at least in part, but combining all of the requirements is still a difficult challenge. Here, we propose and demonstrate a novel architecture consisting of an array of photonic crystal modulators connected by a dielectric bus waveguide. The device architecture features very high scalability and the modulators operate with an AC energy consumption of less than 1fJ/bit. Furthermore, we demonstrate cascadeability and multichannel operation by using a comb laser as the source that simultaneously drives 5 channels.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express14(20), 9431–9435 (2006).
    [CrossRef] [PubMed]
  2. L. Chen, C. R. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” Opt. Express19(26), B946–B951 (2011).
    [CrossRef] [PubMed]
  3. S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012).
    [CrossRef]
  4. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010).
    [CrossRef]
  5. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
    [CrossRef]
  6. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006).
    [CrossRef]
  7. K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel Dispersion Adapted Photonic Crystal Cavity with Improved Disorder Stability,” IEEE J. Quantum Electron.48(9), 1177–1183 (2012).
    [CrossRef]
  8. B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
    [CrossRef]
  9. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
    [CrossRef] [PubMed]
  10. R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A nanophotonic interconnect for high-performance many-core computation,” 16th IEEE Symposium on High Performance Interconnects, 182–189 (2008).
  11. A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).
  12. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
    [CrossRef]
  13. L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22(23), 1744–1746 (2010).
    [CrossRef]
  14. M. Grande, L. O’Faolain, T. P. White, M. Spurny, A. D’Orazio, and T. F. Krauss, “Optical filter with very large stopband (approximately 300 nm) based on a photonic-crystal vertical-directional coupler,” Opt. Lett.34(21), 3292–3294 (2009).
    [CrossRef] [PubMed]
  15. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics,” J. Lightwave Technol.25(9), 2579–2589 (2007).
    [CrossRef]
  16. P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O’ Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98(20), 203506 (2011).
    [CrossRef]
  17. C. P. Reardon, I. H. Rey, K. Welna, L. O’Faolain, and T. F. Krauss, “Fabrication and characterisation of both photonic crystal slow light waveguides and cavities,” J. Vis. Exp.in press.
  18. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express16(21), 17076–17081 (2008).
    [CrossRef] [PubMed]
  19. J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-state Circuits47(6), 1309–1322 (2012).
    [CrossRef]
  20. S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O'Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
    [CrossRef]
  21. C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express19(13), 12480–12489 (2011).
    [CrossRef] [PubMed]
  22. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
    [CrossRef] [PubMed]
  23. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009).
    [CrossRef] [PubMed]
  24. D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
    [CrossRef]
  25. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011).
    [CrossRef] [PubMed]
  26. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  27. X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).
  28. Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express18(5), 5106–5113 (2010).
    [CrossRef] [PubMed]
  29. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20(S2Suppl 2), A293–A308 (2012).
    [CrossRef] [PubMed]
  30. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
    [CrossRef]
  31. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express19(27), 26017–26026 (2011).
    [CrossRef] [PubMed]
  32. K. Debnath, L. O'Faolain, F. Y. Gardes, D. Thomson, G. Reed, and T. F. Krauss, “Low insertion loss modulator based on a vertically coupled photonic crystal resonator,” Proc. Soc. Photo Opt. Instrum. Eng.8267, 826701 (2011) (SPIE).
  33. B. Huettl, R. Kaiser, W. Rehbein, H. Stolpe, Ch. Kindel, S. Fidorra, A. Steffan, A. Umbachl, and H. Heidrich, “Low noise monolithic 40 GHz mode-locked DBR lasers based on GaInAsP/InP,” International Conference on Indium Phosphide and Related Materials, 633–636 (2005).
  34. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011).
    [CrossRef] [PubMed]
  35. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011).
    [CrossRef]

2012

S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012).
[CrossRef]

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel Dispersion Adapted Photonic Crystal Cavity with Improved Disorder Stability,” IEEE J. Quantum Electron.48(9), 1177–1183 (2012).
[CrossRef]

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-state Circuits47(6), 1309–1322 (2012).
[CrossRef]

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20(S2Suppl 2), A293–A308 (2012).
[CrossRef] [PubMed]

2011

C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express19(13), 12480–12489 (2011).
[CrossRef] [PubMed]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011).
[CrossRef] [PubMed]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011).
[CrossRef] [PubMed]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express19(27), 26017–26026 (2011).
[CrossRef] [PubMed]

L. Chen, C. R. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” Opt. Express19(26), B946–B951 (2011).
[CrossRef] [PubMed]

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O'Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

K. Debnath, L. O'Faolain, F. Y. Gardes, D. Thomson, G. Reed, and T. F. Krauss, “Low insertion loss modulator based on a vertically coupled photonic crystal resonator,” Proc. Soc. Photo Opt. Instrum. Eng.8267, 826701 (2011) (SPIE).

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011).
[CrossRef]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O’ Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98(20), 203506 (2011).
[CrossRef]

2010

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010).
[CrossRef]

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22(23), 1744–1746 (2010).
[CrossRef]

Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express18(5), 5106–5113 (2010).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

2009

2008

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express16(21), 17076–17081 (2008).
[CrossRef] [PubMed]

2007

2006

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express14(20), 9431–9435 (2006).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006).
[CrossRef]

2005

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Alic, N.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Andreani, L. C.

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O'Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express16(21), 17076–17081 (2008).
[CrossRef] [PubMed]

Ang, K. W.

Asano, T.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Asghari, M.

Baba, T.

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Belotti, M.

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O'Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

Bergman, K.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011).
[CrossRef]

Biberman, A.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011).
[CrossRef]

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Bornholdt, C.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

Borreman, A.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Buckwalter, J. F.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-state Circuits47(6), 1309–1322 (2012).
[CrossRef]

Cardile, P.

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O’ Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98(20), 203506 (2011).
[CrossRef]

Chan, J.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011).
[CrossRef]

Chen, C. J.

Chen, L.

Chen, Y.-K.

L. Chen, C. R. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” Opt. Express19(26), B946–B951 (2011).
[CrossRef] [PubMed]

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22(23), 1744–1746 (2010).
[CrossRef]

Claussen, S. A.

S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012).
[CrossRef]

Cunningham, J. E.

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

D’Orazio, A.

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Debnath, K.

K. Debnath, L. O'Faolain, F. Y. Gardes, D. Thomson, G. Reed, and T. F. Krauss, “Low insertion loss modulator based on a vertically coupled photonic crystal resonator,” Proc. Soc. Photo Opt. Instrum. Eng.8267, 826701 (2011) (SPIE).

Doerr, C. R.

L. Chen, C. R. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” Opt. Express19(26), B946–B951 (2011).
[CrossRef] [PubMed]

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22(23), 1744–1746 (2010).
[CrossRef]

Dong, P.

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Fang, Q.

Fedeli, J.-M.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Feng, D.

Feng, N.-N.

Franzò, G.

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O’ Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98(20), 203506 (2011).
[CrossRef]

Galli, M.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel Dispersion Adapted Photonic Crystal Cavity with Improved Disorder Stability,” IEEE J. Quantum Electron.48(9), 1177–1183 (2012).
[CrossRef]

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O'Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O’ Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98(20), 203506 (2011).
[CrossRef]

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

K. Debnath, L. O'Faolain, F. Y. Gardes, D. Thomson, G. Reed, and T. F. Krauss, “Low insertion loss modulator based on a vertically coupled photonic crystal resonator,” Proc. Soc. Photo Opt. Instrum. Eng.8267, 826701 (2011) (SPIE).

Geuzebroek, D. H.

Grande, M.

Grote, N.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

Gu, T.

Gubenko, A.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

Guoliang Li, F.

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

Harris, J. S.

S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012).
[CrossRef]

Heideman, R. G.

Hendry, G.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011).
[CrossRef]

Ho, R.

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

Hu, Y.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Ishikura, N.

Kamins, T. I.

S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012).
[CrossRef]

Kovsh, A.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

Krauss, T. F.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel Dispersion Adapted Photonic Crystal Cavity with Improved Disorder Stability,” IEEE J. Quantum Electron.48(9), 1177–1183 (2012).
[CrossRef]

K. Debnath, L. O'Faolain, F. Y. Gardes, D. Thomson, G. Reed, and T. F. Krauss, “Low insertion loss modulator based on a vertically coupled photonic crystal resonator,” Proc. Soc. Photo Opt. Instrum. Eng.8267, 826701 (2011) (SPIE).

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O'Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O’ Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98(20), 203506 (2011).
[CrossRef]

M. Grande, L. O’Faolain, T. P. White, M. Spurny, A. D’Orazio, and T. F. Krauss, “Optical filter with very large stopband (approximately 300 nm) based on a photonic-crystal vertical-directional coupler,” Opt. Lett.34(21), 3292–3294 (2009).
[CrossRef] [PubMed]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express16(21), 17076–17081 (2008).
[CrossRef] [PubMed]

C. P. Reardon, I. H. Rey, K. Welna, L. O’Faolain, and T. F. Krauss, “Fabrication and characterisation of both photonic crystal slow light waveguides and cavities,” J. Vis. Exp.in press.

Krestnikov, I.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

Krishnamoorthy, A. V.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-state Circuits47(6), 1309–1322 (2012).
[CrossRef]

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Kuramochi, E.

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006).
[CrossRef]

Kwong, D.-L.

Leinse, A.

Lentine, A. L.

Levy, J. S.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011).
[CrossRef]

Lexau, J.

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

Li, G.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-state Circuits47(6), 1309–1322 (2012).
[CrossRef]

Li, J.

Liang, H.

Liow, T.-Y.

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22(23), 1744–1746 (2010).
[CrossRef]

Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express18(5), 5106–5113 (2010).
[CrossRef] [PubMed]

Lipson, M.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011).
[CrossRef]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011).
[CrossRef] [PubMed]

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express14(20), 9431–9435 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, J.

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

Livshits, D.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

Lo, G. Q.

Lo, G.-Q.

Lo Savio, R.

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O’ Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98(20), 203506 (2011).
[CrossRef]

Luo, Y.

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

Manipatruni, S.

Martinelli, M.

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Maximov, M. V.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

McMillan, J. F.

Melloni, A.

Mikhrin, S.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

Miller, D.

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20(S2Suppl 2), A293–A308 (2012).
[CrossRef] [PubMed]

S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012).
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006).
[CrossRef]

Morichetti, F.

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Nagashima, T.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

Nguyen, H. C.

Nishiguchi, K.

Noda, S.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Notomi, M.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006).
[CrossRef]

O’ Faolain, L.

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O’ Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98(20), 203506 (2011).
[CrossRef]

O’Faolain, L.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel Dispersion Adapted Photonic Crystal Cavity with Improved Disorder Stability,” IEEE J. Quantum Electron.48(9), 1177–1183 (2012).
[CrossRef]

M. Grande, L. O’Faolain, T. P. White, M. Spurny, A. D’Orazio, and T. F. Krauss, “Optical filter with very large stopband (approximately 300 nm) based on a photonic-crystal vertical-directional coupler,” Opt. Lett.34(21), 3292–3294 (2009).
[CrossRef] [PubMed]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express16(21), 17076–17081 (2008).
[CrossRef] [PubMed]

C. P. Reardon, I. H. Rey, K. Welna, L. O’Faolain, and T. F. Krauss, “Fabrication and characterisation of both photonic crystal slow light waveguides and cavities,” J. Vis. Exp.in press.

O'Faolain, L.

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O'Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

K. Debnath, L. O'Faolain, F. Y. Gardes, D. Thomson, G. Reed, and T. F. Krauss, “Low insertion loss modulator based on a vertically coupled photonic crystal resonator,” Proc. Soc. Photo Opt. Instrum. Eng.8267, 826701 (2011) (SPIE).

Portalupi, S. L.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel Dispersion Adapted Photonic Crystal Cavity with Improved Disorder Stability,” IEEE J. Quantum Electron.48(9), 1177–1183 (2012).
[CrossRef]

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O'Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Preston, K.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011).
[CrossRef]

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009).
[CrossRef] [PubMed]

Priolo, F.

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O’ Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98(20), 203506 (2011).
[CrossRef]

Qian, W.

Radic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Raj, K.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-state Circuits47(6), 1309–1322 (2012).
[CrossRef]

Reardon, C. P.

C. P. Reardon, I. H. Rey, K. Welna, L. O’Faolain, and T. F. Krauss, “Fabrication and characterisation of both photonic crystal slow light waveguides and cavities,” J. Vis. Exp.in press.

Reed, G.

K. Debnath, L. O'Faolain, F. Y. Gardes, D. Thomson, G. Reed, and T. F. Krauss, “Low insertion loss modulator based on a vertically coupled photonic crystal resonator,” Proc. Soc. Photo Opt. Instrum. Eng.8267, 826701 (2011) (SPIE).

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Ren, S.

S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012).
[CrossRef]

Rey, I. H.

C. P. Reardon, I. H. Rey, K. Welna, L. O’Faolain, and T. F. Krauss, “Fabrication and characterisation of both photonic crystal slow light waveguides and cavities,” J. Vis. Exp.in press.

Rong, Y.

S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012).
[CrossRef]

Sakai, Y.

Schaevitz, R. K.

S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express14(20), 9431–9435 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Shafiiha, R.

Shakya, J.

Sherwood-Droz, N.

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011).
[CrossRef] [PubMed]

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011).
[CrossRef]

Shinkawa, M.

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006).
[CrossRef]

Shubin, I.

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

Song, B.-S.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Song, J. F.

Spurny, M.

Tanabe, T.

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006).
[CrossRef]

Thacker, H. D.

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

Thomson, D.

K. Debnath, L. O'Faolain, F. Y. Gardes, D. Thomson, G. Reed, and T. F. Krauss, “Low insertion loss modulator based on a vertically coupled photonic crystal resonator,” Proc. Soc. Photo Opt. Instrum. Eng.8267, 826701 (2011) (SPIE).

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Trotter, D. C.

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006).
[CrossRef]

Watts, M. R.

Weimert, J.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

Welna, K.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel Dispersion Adapted Photonic Crystal Cavity with Improved Disorder Stability,” IEEE J. Quantum Electron.48(9), 1177–1183 (2012).
[CrossRef]

C. P. Reardon, I. H. Rey, K. Welna, L. O’Faolain, and T. F. Krauss, “Fabrication and characterisation of both photonic crystal slow light waveguides and cavities,” J. Vis. Exp.in press.

West, L.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

White, T. P.

Wojcik, G.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

Wong, C. W.

Xu, Q.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express14(20), 9431–9435 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yao, J.

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

Yin, D.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

Yu, M.

Yu, M. B.

Zheng, J.

Zheng, X.

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-state Circuits47(6), 1309–1322 (2012).
[CrossRef]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

Zhukov, A.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Zortman, W. A.

Appl. Phys. Lett.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett.88(4), 041112 (2006).
[CrossRef]

P. Cardile, G. Franzò, R. Lo Savio, M. Galli, T. F. Krauss, F. Priolo, and L. O’ Faolain, “Electrical conduction and optical properties of doped silicon-on-insulator photonic crystals,” Appl. Phys. Lett.98(20), 203506 (2011).
[CrossRef]

IEEE J. Quantum Electron.

K. Welna, S. L. Portalupi, M. Galli, L. O’Faolain, and T. F. Krauss, “Novel Dispersion Adapted Photonic Crystal Cavity with Improved Disorder Stability,” IEEE J. Quantum Electron.48(9), 1177–1183 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 33–44 (2010).
[CrossRef]

IEEE J. Solid-state Circuits

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-state Circuits47(6), 1309–1322 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Zheng, Y. Luo, J. Lexau, J. Liu, F. Guoliang Li, H. D. Thacker, I. Shubin, J. Yao, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “2-pJ/bit (On-Chip) 10-Gb/s digital CMOS silicon photonic link,” IEEE Photon. Technol. Lett.24, 1260–1262 (2012).

D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

L. Chen, C. R. Doerr, Y.-K. Chen, and T.-Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22(23), 1744–1746 (2010).
[CrossRef]

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength control of nanocavities by nanometer-scaled adjustment of two-dimensional photonic crystal slab structures,” IEEE Photon. Technol. Lett.20(7), 532–534 (2008).
[CrossRef]

S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012).
[CrossRef]

J. Emerg. Technol. Comput. Syst.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” J. Emerg. Technol. Comput. Syst.7(2), 7:1–7, 25 (2011).
[CrossRef]

J. Lightwave Technol.

J. Vis. Exp.

C. P. Reardon, I. H. Rey, K. Welna, L. O’Faolain, and T. F. Krauss, “Fabrication and characterisation of both photonic crystal slow light waveguides and cavities,” J. Vis. Exp.in press.

Nat. Mater.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Nature

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express16(21), 17076–17081 (2008).
[CrossRef] [PubMed]

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express17(17), 15248–15256 (2009).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express14(20), 9431–9435 (2006).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

Q. Fang, T.-Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express18(5), 5106–5113 (2010).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express18(10), 9852–9858 (2010).
[CrossRef] [PubMed]

C. J. Chen, J. Zheng, T. Gu, J. F. McMillan, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation,” Opt. Express19(13), 12480–12489 (2011).
[CrossRef] [PubMed]

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express19(14), 13000–13007 (2011).
[CrossRef] [PubMed]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011).
[CrossRef] [PubMed]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express19(27), 26017–26026 (2011).
[CrossRef] [PubMed]

L. Chen, C. R. Doerr, P. Dong, and Y.-K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” Opt. Express19(26), B946–B951 (2011).
[CrossRef] [PubMed]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express20(S2Suppl 2), A293–A308 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O'Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B84(4), 045423 (2011).
[CrossRef]

Proc. IEEE

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009).
[CrossRef]

Proc. Soc. Photo Opt. Instrum. Eng.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” Proc. Soc. Photo Opt. Instrum. Eng.7230, 72300M (2009).

K. Debnath, L. O'Faolain, F. Y. Gardes, D. Thomson, G. Reed, and T. F. Krauss, “Low insertion loss modulator based on a vertically coupled photonic crystal resonator,” Proc. Soc. Photo Opt. Instrum. Eng.8267, 826701 (2011) (SPIE).

Rep. Prog. Phys.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010).
[CrossRef]

Other

R. G. Beausoleil, J. Ahn, N. Binkert, A. Davis, D. Fattal, M. Fiorentino, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “A nanophotonic interconnect for high-performance many-core computation,” 16th IEEE Symposium on High Performance Interconnects, 182–189 (2008).

B. Huettl, R. Kaiser, W. Rehbein, H. Stolpe, Ch. Kindel, S. Fidorra, A. Steffan, A. Umbachl, and H. Heidrich, “Low noise monolithic 40 GHz mode-locked DBR lasers based on GaInAsP/InP,” International Conference on Indium Phosphide and Related Materials, 633–636 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the device, where the PhC cavity and the bus waveguide are vertically coupled through a buffer layer. An L3 PhC cavity is shown in the schematic for illustration purposes. The design of [7] is used experimentally; (b) Cross section of the device, consisting of a pin diode is embedded into a PhC cavity; (c) Fourier space distribution of the PhC cavity, the white circle representing the light cone and the yellow ellipses indicating the positions of the Fourier components of the silicon nitride waveguide mode.

Fig. 2
Fig. 2

(a) SEM image of the PhC cavity. All the five cavity designs were identical, except the positions of the four innermost holes of each cavity were tuned to achieve the required resonance wavelength, (b) top view of the cascaded PhC cavity based modulator set, where five cavities are coupled to a single silicon nitride waveguide.

Fig. 3
Fig. 3

(a) Normalized transmission spectrum (TE input polarization) of the silicon nitride waveguide vertically coupled to five PhC cavities. The dips correspond to each cavity mode, (b), (c) eye diagrams of the modulated optical output of the first modulator at 0.5Gbit/s and 1.0Gbit/s respectively. The horizontal-axis scale is 1ns/division for 0.5gbit/s and 200ps/div for 1 Gbit/s. In this case, the number of channels is limited by the 8nm FSR of the multimode cavity used here. This is not a fundamental limit and this coupling approach may be extended to cavities with very large FSR’s such as [5, 6].

Fig. 4
Fig. 4

Eye diagrams at 0.5Gbit/s for channels 1-5. Open eyes were observed for each channel. The horizontal-axis scale is 1ns/division

Fig. 5
Fig. 5

Normalized transmission spectrum of the bus waveguide with a tunable laser when each cavity is actively tuned to match the comb laser spectrum, (b) normalized transmission spectrum of the bus waveguide with the comb laser when cavity resonances are not aligned with the comb laser spectrum, (c) normalized transmission spectrum of the bus waveguide with the comb laser when cavity resonances are aligned with the comb laser, inset shows the comb laser spectrum

Tables (1)

Tables Icon

Table 1 Comparison of Different Low Power WDM Modulator Techniques

Metrics