Abstract

A blue-emitting phosphor - Ca2BN2F:Eu2+ was synthesized by a solid state reaction. Ca2BN2F crystallizes in the orthorhombic system with space group Pnma (No. 62) and Z = 4. The Ca2BN2F:Eu2+ exhibites broad emission and excitation bands corresponding to the allowed fd electronic transition of Eu2+. Concentration quenching of Eu2+ emission was observed for 1 mol% due to the energy transfer between Eu2+ ions via electric multipolar interaction with the critical transfer distance of about 25.11 Å. In addition, the thermal stability and applications of blue-emitting Ca2BN2F:Eu2+ phosphors in n-UV LED have been firstly discussed in this study. The preliminary data demonstrate that the novel blue-emitting phosphor exhibits the potential to be an n-UV convertible phosphor.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
    [CrossRef]
  2. W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett.93(9), 091905 (2008).
    [CrossRef]
  3. H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids61(12), 2001–2006 (2000).
    [CrossRef]
  4. Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin.116(1-2), 107–116 (2006).
    [CrossRef]
  5. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamotoa, “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes,” Electrochem. Solid-State Lett.9(4), H22–H25 (2006).
    [CrossRef]
  6. H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic method and luminescence properties of SrxCa1−xAlSiN3:Eu2+ mixed nitride phosphors,” J. Electrochem. Soc.155(3), F31–F36 (2008).
    [CrossRef]
  7. R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett.91, 061119 (2007).
  8. Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater.17(12), 3242–3248 (2005).
    [CrossRef]
  9. F. E. Rohrer and R. Nesper, “M2BN2X (M = Ca, Sr; X = F, Cl): New Halogenide Compounds with Isolated BN23- Units,” J. Solid State Chem.135(2), 194–200 (1998).
    [CrossRef]
  10. Y. Q. Li, C. M. Fang, Y. Fang, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Electronic structure and photoluminescence properties of Eu2+ -activated Ca2BN2F,” J. Solid State Chem.182(12), 3299–3304 (2009).
    [CrossRef]
  11. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]
  12. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep.24, 131–144 (1969).
  13. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
    [CrossRef]

2010

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

2009

Y. Q. Li, C. M. Fang, Y. Fang, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Electronic structure and photoluminescence properties of Eu2+ -activated Ca2BN2F,” J. Solid State Chem.182(12), 3299–3304 (2009).
[CrossRef]

2008

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett.93(9), 091905 (2008).
[CrossRef]

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic method and luminescence properties of SrxCa1−xAlSiN3:Eu2+ mixed nitride phosphors,” J. Electrochem. Soc.155(3), F31–F36 (2008).
[CrossRef]

2007

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett.91, 061119 (2007).

2006

Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin.116(1-2), 107–116 (2006).
[CrossRef]

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamotoa, “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes,” Electrochem. Solid-State Lett.9(4), H22–H25 (2006).
[CrossRef]

2005

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater.17(12), 3242–3248 (2005).
[CrossRef]

2000

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids61(12), 2001–2006 (2000).
[CrossRef]

1998

F. E. Rohrer and R. Nesper, “M2BN2X (M = Ca, Sr; X = F, Cl): New Halogenide Compounds with Isolated BN23- Units,” J. Solid State Chem.135(2), 194–200 (1998).
[CrossRef]

1976

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

1969

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep.24, 131–144 (1969).

1953

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

Bagkar, N. C.

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett.91, 061119 (2007).

Blasse, G.

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep.24, 131–144 (1969).

de With, G.

Y. Q. Li, C. M. Fang, Y. Fang, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Electronic structure and photoluminescence properties of Eu2+ -activated Ca2BN2F,” J. Solid State Chem.182(12), 3299–3304 (2009).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin.116(1-2), 107–116 (2006).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater.17(12), 3242–3248 (2005).
[CrossRef]

Delsing, A. C. A.

Y. Q. Li, C. M. Fang, Y. Fang, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Electronic structure and photoluminescence properties of Eu2+ -activated Ca2BN2F,” J. Solid State Chem.182(12), 3299–3304 (2009).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater.17(12), 3242–3248 (2005).
[CrossRef]

DenBaars, S. P.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett.93(9), 091905 (2008).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

Fang, C. M.

Y. Q. Li, C. M. Fang, Y. Fang, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Electronic structure and photoluminescence properties of Eu2+ -activated Ca2BN2F,” J. Solid State Chem.182(12), 3299–3304 (2009).
[CrossRef]

Fang, Y.

Y. Q. Li, C. M. Fang, Y. Fang, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Electronic structure and photoluminescence properties of Eu2+ -activated Ca2BN2F,” J. Solid State Chem.182(12), 3299–3304 (2009).
[CrossRef]

Fellows, N. N.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett.93(9), 091905 (2008).
[CrossRef]

Hintzen, H. T.

Y. Q. Li, C. M. Fang, Y. Fang, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Electronic structure and photoluminescence properties of Eu2+ -activated Ca2BN2F,” J. Solid State Chem.182(12), 3299–3304 (2009).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin.116(1-2), 107–116 (2006).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater.17(12), 3242–3248 (2005).
[CrossRef]

Hirata, G. A.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett.93(9), 091905 (2008).
[CrossRef]

Hirosaki, N.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamotoa, “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes,” Electrochem. Solid-State Lett.9(4), H22–H25 (2006).
[CrossRef]

Höppe, H. A.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids61(12), 2001–2006 (2000).
[CrossRef]

Hua, S. F.

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett.91, 061119 (2007).

Im, W. B.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett.93(9), 091905 (2008).
[CrossRef]

Itou, M.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic method and luminescence properties of SrxCa1−xAlSiN3:Eu2+ mixed nitride phosphors,” J. Electrochem. Soc.155(3), F31–F36 (2008).
[CrossRef]

Kijima, N.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic method and luminescence properties of SrxCa1−xAlSiN3:Eu2+ mixed nitride phosphors,” J. Electrochem. Soc.155(3), F31–F36 (2008).
[CrossRef]

Kim, Y. I.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett.93(9), 091905 (2008).
[CrossRef]

Li, Y. Q.

Y. Q. Li, C. M. Fang, Y. Fang, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Electronic structure and photoluminescence properties of Eu2+ -activated Ca2BN2F,” J. Solid State Chem.182(12), 3299–3304 (2009).
[CrossRef]

Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin.116(1-2), 107–116 (2006).
[CrossRef]

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater.17(12), 3242–3248 (2005).
[CrossRef]

Liu, R. S.

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett.91, 061119 (2007).

Liu, Y. H.

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett.91, 061119 (2007).

Lutz, H.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids61(12), 2001–2006 (2000).
[CrossRef]

Ma, Y. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

Masui, H.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett.93(9), 091905 (2008).
[CrossRef]

Morys, P.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids61(12), 2001–2006 (2000).
[CrossRef]

Naito, A.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamotoa, “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes,” Electrochem. Solid-State Lett.9(4), H22–H25 (2006).
[CrossRef]

Nakajima, T.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamotoa, “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes,” Electrochem. Solid-State Lett.9(4), H22–H25 (2006).
[CrossRef]

Nesper, R.

F. E. Rohrer and R. Nesper, “M2BN2X (M = Ca, Sr; X = F, Cl): New Halogenide Compounds with Isolated BN23- Units,” J. Solid State Chem.135(2), 194–200 (1998).
[CrossRef]

Pan, Y. X.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

Rohrer, F. E.

F. E. Rohrer and R. Nesper, “M2BN2X (M = Ca, Sr; X = F, Cl): New Halogenide Compounds with Isolated BN23- Units,” J. Solid State Chem.135(2), 194–200 (1998).
[CrossRef]

Schnick, W.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids61(12), 2001–2006 (2000).
[CrossRef]

Seilmeier, A.

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids61(12), 2001–2006 (2000).
[CrossRef]

Seki, K.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic method and luminescence properties of SrxCa1−xAlSiN3:Eu2+ mixed nitride phosphors,” J. Electrochem. Soc.155(3), F31–F36 (2008).
[CrossRef]

Seshadri, R.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett.93(9), 091905 (2008).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Uheda, K.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamotoa, “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes,” Electrochem. Solid-State Lett.9(4), H22–H25 (2006).
[CrossRef]

Wada, H.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic method and luminescence properties of SrxCa1−xAlSiN3:Eu2+ mixed nitride phosphors,” J. Electrochem. Soc.155(3), F31–F36 (2008).
[CrossRef]

Watanabe, H.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic method and luminescence properties of SrxCa1−xAlSiN3:Eu2+ mixed nitride phosphors,” J. Electrochem. Soc.155(3), F31–F36 (2008).
[CrossRef]

Xiao, F.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

Yamamoto, Y.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamotoa, “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes,” Electrochem. Solid-State Lett.9(4), H22–H25 (2006).
[CrossRef]

Yamamotoa, H.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamotoa, “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes,” Electrochem. Solid-State Lett.9(4), H22–H25 (2006).
[CrossRef]

Ye, S.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

Zhang, Q. Y.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

Acta Crystallogr. A

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Appl. Phys. Lett.

W. B. Im, Y. I. Kim, N. N. Fellows, H. Masui, G. A. Hirata, S. P. DenBaars, and R. Seshadri, “A yellow-emitting Ce3+ phosphor, La1−xCexSr2AlO5, for white light-emitting diodes,” Appl. Phys. Lett.93(9), 091905 (2008).
[CrossRef]

R. S. Liu, Y. H. Liu, N. C. Bagkar, and S. F. Hua, “Enhanced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” Appl. Phys. Lett.91, 061119 (2007).

Chem. Mater.

Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): a promising class of novel LED conversion phosphors,” Chem. Mater.17(12), 3242–3248 (2005).
[CrossRef]

Electrochem. Solid-State Lett.

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamotoa, “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes,” Electrochem. Solid-State Lett.9(4), H22–H25 (2006).
[CrossRef]

J. Chem. Phys.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21(5), 836–850 (1953).
[CrossRef]

J. Electrochem. Soc.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic method and luminescence properties of SrxCa1−xAlSiN3:Eu2+ mixed nitride phosphors,” J. Electrochem. Soc.155(3), F31–F36 (2008).
[CrossRef]

J. Lumin.

Y. Q. Li, G. de With, and H. T. Hintzen, “Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials,” J. Lumin.116(1-2), 107–116 (2006).
[CrossRef]

J. Phys. Chem. Solids

H. A. Höppe, H. Lutz, P. Morys, W. Schnick, and A. Seilmeier, “Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion,” J. Phys. Chem. Solids61(12), 2001–2006 (2000).
[CrossRef]

J. Solid State Chem.

F. E. Rohrer and R. Nesper, “M2BN2X (M = Ca, Sr; X = F, Cl): New Halogenide Compounds with Isolated BN23- Units,” J. Solid State Chem.135(2), 194–200 (1998).
[CrossRef]

Y. Q. Li, C. M. Fang, Y. Fang, A. C. A. Delsing, G. de With, and H. T. Hintzen, “Electronic structure and photoluminescence properties of Eu2+ -activated Ca2BN2F,” J. Solid State Chem.182(12), 3299–3304 (2009).
[CrossRef]

Mater. Sci. Eng. Rep.

S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng. Rep.71(1), 1–34 (2010).
[CrossRef]

Philips Res. Rep.

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep.24, 131–144 (1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD patterns of Ca2BN2F from JCPDS 89-4591 and as-synthesized Ca2BN2F:Eu2+ sample. Inset: Crystal structure of Ca2BN2F.

Fig. 2
Fig. 2

Excitation and emission spectra of as-synthesized Ca2BN2F:1%Eu2+ phosphor. The inset shows the phosphor under 365 nm excitation in a UV box.

Fig. 3
Fig. 3

CIE chromaticity diagram for Ca2BN2F:1%Eu2+ excited at 336 nm.

Fig. 4
Fig. 4

Excitation and emission spectra of Ca2BN2F:x%Eu2+ phosphors with varying Eu2+ concentrations.

Fig. 5
Fig. 5

Thermal quenching of Ca2BN2F:1%Eu2+ excited at 336 nm. Inset: Normalized PL intensity of Ca2BN2F:1%Eu2+ as a function of temperature.

Fig. 6
Fig. 6

EL spectrum of the white LED composed of GaN-based n-UV-LED (370 nm) and Ca2BN2F:Eu2+ (blue), (Ba,Sr)2SiO4:Eu2+ (green) and CaAlSiN3:Eu2+ (red) phosphors driven by a 350-mA current.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Rc=2 [ 3V 4π x c Z ] 1/3
ln( I o I )=lnA E a kT ,

Metrics