Abstract

We present multi-color image projection through highly scattering media for image formation without need of reconstruction. We overcome the fundamental limitations to the transmission of visual information imposed by multiple scattering phenomena via multi-parametric adaptive wavefront modulation that takes into account the scattering properties of the medium. In order to evaluate the wavefront modulation required for a specific image formation we implement a global optimization via a genetic algorithm. We create color images by diffraction and multiple scattering effects as well as via RGB demosaicing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
    [CrossRef] [PubMed]
  2. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express16(1), 67–80 (2008).
    [CrossRef] [PubMed]
  3. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
    [CrossRef] [PubMed]
  4. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010).
    [CrossRef]
  5. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
    [CrossRef] [PubMed]
  6. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
    [CrossRef] [PubMed]
  7. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express18(12), 12283–12290 (2010).
    [CrossRef] [PubMed]
  8. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
    [CrossRef]
  9. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express20(5), 4840–4849 (2012).
    [CrossRef] [PubMed]
  10. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012).
    [CrossRef] [PubMed]
  11. S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
    [CrossRef] [PubMed]
  12. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
    [CrossRef] [PubMed]
  13. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
    [CrossRef]
  14. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett.35(8), 1245–1247 (2010).
    [CrossRef] [PubMed]
  15. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express18(20), 20723–20731 (2010).
    [CrossRef] [PubMed]
  16. O. Bryngdahl and F. Wyrowski, “Digital holography computer genereated holograms,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1978).
  17. The Math Works, MATLAB Image Processing Toolbox: User’s Guide (September 2011), www.mathworks.com .
  18. F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett.36(3), 373–375 (2011).
    [CrossRef] [PubMed]
  19. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express20(14), 15086–15092 (2012).
    [CrossRef] [PubMed]
  20. V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
    [CrossRef] [PubMed]

2012

2011

F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett.36(3), 373–375 (2011).
[CrossRef] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

2010

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett.35(8), 1245–1247 (2010).
[CrossRef] [PubMed]

C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express18(20), 20723–20731 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express18(12), 12283–12290 (2010).
[CrossRef] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010).
[CrossRef]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

2008

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express16(1), 67–80 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

2007

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

Aegerter, C. M.

Bifano, T.

Boccara, A. C.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Brown, A. N.

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Choi, W.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Choi, Y.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Conkey, D. B.

Dasari, R. R.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Fang-Yen, C.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Feld, M. S.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Fink, M.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

Grange, R.

Hoffman, S.

Hsieh, C. L.

Kang, P.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Katz, O.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

Lagendijk, A.

Laporte, G.

Lee, K. J.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Lerosey, G.

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Lu, Y.

Moore, J.

Mosk, A. P.

F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett.36(3), 373–375 (2011).
[CrossRef] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010).
[CrossRef]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express16(1), 67–80 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Nikolenko, V.

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

Paxman, R.

Piestun, R.

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

Poskanzer, K. E.

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

Psaltis, D.

Pu, Y.

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

Stockbridge, C.

Toussaint, K.

van Beijnum, F.

van Putten, E. G.

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010).
[CrossRef]

I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett.35(8), 1245–1247 (2010).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express16(1), 67–80 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yang, T. D.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Yuste, R.

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

Nat Commun

S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010).
[CrossRef] [PubMed]

Nat. Methods

V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007).
[CrossRef] [PubMed]

Nat. Photonics

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6(8), 549–553 (2012).
[CrossRef]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010).
[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008).
[CrossRef] [PubMed]

Opt. Commun.

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett.104(10), 100601 (2010).
[CrossRef] [PubMed]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett.107(2), 023902 (2011).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008).
[CrossRef] [PubMed]

Other

O. Bryngdahl and F. Wyrowski, “Digital holography computer genereated holograms,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1978).

The Math Works, MATLAB Image Processing Toolbox: User’s Guide (September 2011), www.mathworks.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulation results comparing the mean enhancement and standard deviation of enhancement for the CSA-I, CSA-M, and GA methods to the ideal case of 1/N times CSA-I max.

Fig. 2
Fig. 2

(a) The experimental setup. (b) Experimental results of focusing multiple spots with one and two colors with the GA. Each data point is experimentally optimized ten times.

Fig. 3
Fig. 3

Single color image creation. (a) The target intensity distribution. (b) Experimentally generated intensity distribution through an eggshell using binned CCD pixels. (c) High resolution image intensity distribution.

Fig. 4
Fig. 4

Two color image creation. (a) The desired intensity distribution designed for an RGB Bayer filter CCD. (b) Experimentally obtained intensity distribution through an eggshell with RGB CCD. (c) Two color image obtained after demosaicing the image in (b) with same resolution.

Fig. 5
Fig. 5

Three color pattern projection for full color image creation. (a) The target intensity distribution designed for an RGB Bayer filter CCD. (b) Rainbow created by demosaicing the target intensity distribution. (c) Experimentally obtained intensity distribution captured with RBG CCD through an eggshell. (d) Rainbow obtained after demosaicing the image in (c).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C= m=1 M I m M·σ(I),where I m = 1 N | n N t mn e i ϕ n | 2 ,

Metrics