Abstract

We report on a one-step writing process of a planar waveguide including a Bragg grating structure in bulk Polymethylmethacrylate (PMMA). A KrF excimer laser and a phase mask covered by an amplitude mask were used to locally increase the refractive index in PMMA and thereby generate simultaneously the planar waveguide and the Bragg grating. Our results show a reflected wavelength of the Bragg grating of about 1558.5 nm in accordance to the phase mask period. The reflectivity of the grating is about 80%. Initial characteristics of the Bragg grating structure towards humidity are investigated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett.30(24), 3344–3346 (2005).
    [CrossRef] [PubMed]
  2. R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010).
    [CrossRef] [PubMed]
  3. S. Belle, S. Scheurich, R. Hellmann, S. So, I. J. G. Sparrow, and G. D. Emmerson, “Refractive index sensing for online monitoring water and ethanol content in bio fuels,” Proc. SPIE7726, 77261K, 77261K-6 (2010).
    [CrossRef]
  4. D. Wales, R. Parker, and J. Gates, “An integrated Bragg grating oxygen sensor using a hydrophobic sol-gel layer doped with an organic dye,” The European Conference on Lasers and Electro-Optics173306 (2011).
  5. S. Scheurich, S. Belle, R. Hellmann, S. So, I. J. G. Sparrow, and G. Emmerson, “Application of a silica-on-silicon planar optical waveguide Bragg grating sensor for organic liquid compound detection,” Proc. SPIE7356, 73561B, 73561B-8 (2009).
    [CrossRef]
  6. M. Rosenberger, S. Belle, and R. Hellmann, “Detection of biochemical reaction and DNA hybridization using a planar Bragg grating sensor,” Proc. SPIE8073, 80730C, 80730C-7 (2011).
    [CrossRef]
  7. K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
    [CrossRef]
  8. G. Emmerson, S. Watts, C. Gawith, V. Albanis, C. Riziotis, A. Fu, M. Ibsen, R. B. Williams, and P. G. Smith, “Directly UV-written planar channel waveguides containing simultaneously defined Bragg gratings,” Opt. Fiber Comm. Conf. MF52 (2003).
  9. G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004).
    [CrossRef]
  10. G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
    [CrossRef]
  11. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron.6(1), 54–68 (2000).
    [CrossRef]
  12. N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers” Ecole Polytechnique Federale de Lausanne (2008).
  13. C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE7503, 750380, 750380-4 (2009).
    [CrossRef]
  14. C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett.46(9), 643–644 (2010).
    [CrossRef]
  15. H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
    [CrossRef]
  16. W. Zhang, D. Webb, and G. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol.30(8), 1090–1096 (2012).
    [CrossRef]
  17. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
    [CrossRef]
  18. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
    [CrossRef]
  19. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
    [CrossRef]
  20. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
    [CrossRef]
  21. L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
    [CrossRef] [PubMed]
  22. W. J. Tomlinson, “Photoinduced refractive index increase in Poly(methylmethacrylate) and its applications,” Appl. Phys. Lett.16(12), 486 (1970).
    [CrossRef]
  23. A. Baum, P. J. Scully, W. Perrie, M. Sharp, K. G. Watkins, D. Jones, R. Issac, and D. A. Jaroszynski “NUV and NIR femtosecond laser modification of PMMA,” Proc. LPM2007, (2007).
  24. D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett.17(3), 591–593 (2005).
    [CrossRef]
  25. E. Gaganidze, K. Litfin, J. Boehm, and S. Finke, “Fabrication and characterization of single-mode integrated polymer waveguide components,” Proc. SPIE5451, 32–39 (2004).
    [CrossRef]
  26. M. Koerdt and F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci.257(12), 5237–5240 (2011).
    [CrossRef]
  27. C. Wochnowski, M. Shamseldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil.89(2), 252–264 (2005).
    [CrossRef]
  28. M. Shams-el-Din, C. Wochnowski, S. Metev, A. A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci.236(1-4), 31–41 (2004).
    [CrossRef]
  29. C. Wochnowski, M. Shamseldin, S. Metev, A. Hamza, and W. Juptner, “Mode field distribution of an integrated-optical waveguide generated by UV-laser radiation at the surface of a planar polymer chip,” Opt. Commun.262(1), 57–67 (2006).
    [CrossRef]
  30. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett.14(15), 823–825 (1989).
    [CrossRef] [PubMed]
  31. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett.29(6), 566–568 (1993).
    [CrossRef]
  32. M. Koerdt, Herstellung von integiert-optischen Sensorstrukturen in Polymersubstraten basierend auf Brechzahländerungen durch ultraviolette Laserstrahlung (BIAS Verlag Bremen, 2011).
  33. C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A.120(1), 44–52 (2005).
    [CrossRef]
  34. T. Ishigure, E. Nihei, and Y. Koike, “Optimum refractive-index profile of the graded-index polymer optical fiber, toward gigabit data links,” Appl. Opt.35(12), 2048–2053 (1996).
    [CrossRef] [PubMed]
  35. Raman Kashyap, Fiber Bragg Gratings (Academic Press, 2010).
  36. C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE J. Sens.6(2), 331–339 (2006).
    [CrossRef]
  37. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
    [CrossRef] [PubMed]

2012

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

W. Zhang, D. Webb, and G. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol.30(8), 1090–1096 (2012).
[CrossRef]

2011

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

M. Koerdt and F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci.257(12), 5237–5240 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

M. Rosenberger, S. Belle, and R. Hellmann, “Detection of biochemical reaction and DNA hybridization using a planar Bragg grating sensor,” Proc. SPIE8073, 80730C, 80730C-7 (2011).
[CrossRef]

2010

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010).
[CrossRef] [PubMed]

S. Belle, S. Scheurich, R. Hellmann, S. So, I. J. G. Sparrow, and G. D. Emmerson, “Refractive index sensing for online monitoring water and ethanol content in bio fuels,” Proc. SPIE7726, 77261K, 77261K-6 (2010).
[CrossRef]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett.46(9), 643–644 (2010).
[CrossRef]

2009

S. Scheurich, S. Belle, R. Hellmann, S. So, I. J. G. Sparrow, and G. Emmerson, “Application of a silica-on-silicon planar optical waveguide Bragg grating sensor for organic liquid compound detection,” Proc. SPIE7356, 73561B, 73561B-8 (2009).
[CrossRef]

C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE7503, 750380, 750380-4 (2009).
[CrossRef]

2006

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

C. Wochnowski, M. Shamseldin, S. Metev, A. Hamza, and W. Juptner, “Mode field distribution of an integrated-optical waveguide generated by UV-laser radiation at the surface of a planar polymer chip,” Opt. Commun.262(1), 57–67 (2006).
[CrossRef]

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE J. Sens.6(2), 331–339 (2006).
[CrossRef]

2005

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A.120(1), 44–52 (2005).
[CrossRef]

C. Wochnowski, M. Shamseldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil.89(2), 252–264 (2005).
[CrossRef]

A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett.30(24), 3344–3346 (2005).
[CrossRef] [PubMed]

D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett.17(3), 591–593 (2005).
[CrossRef]

2004

E. Gaganidze, K. Litfin, J. Boehm, and S. Finke, “Fabrication and characterization of single-mode integrated polymer waveguide components,” Proc. SPIE5451, 32–39 (2004).
[CrossRef]

G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004).
[CrossRef]

M. Shams-el-Din, C. Wochnowski, S. Metev, A. A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci.236(1-4), 31–41 (2004).
[CrossRef]

2002

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

2001

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

2000

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron.6(1), 54–68 (2000).
[CrossRef]

1997

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

1996

1993

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett.29(6), 566–568 (1993).
[CrossRef]

1989

1970

W. J. Tomlinson, “Photoinduced refractive index increase in Poly(methylmethacrylate) and its applications,” Appl. Phys. Lett.16(12), 486 (1970).
[CrossRef]

Abuelqomsan, M.

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A.120(1), 44–52 (2005).
[CrossRef]

Albanis, V.

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Anderson, D. Z.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett.29(6), 566–568 (1993).
[CrossRef]

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Bang, O.

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Belle, S.

M. Rosenberger, S. Belle, and R. Hellmann, “Detection of biochemical reaction and DNA hybridization using a planar Bragg grating sensor,” Proc. SPIE8073, 80730C, 80730C-7 (2011).
[CrossRef]

S. Belle, S. Scheurich, R. Hellmann, S. So, I. J. G. Sparrow, and G. D. Emmerson, “Refractive index sensing for online monitoring water and ethanol content in bio fuels,” Proc. SPIE7726, 77261K, 77261K-6 (2010).
[CrossRef]

S. Scheurich, S. Belle, R. Hellmann, S. So, I. J. G. Sparrow, and G. Emmerson, “Application of a silica-on-silicon planar optical waveguide Bragg grating sensor for organic liquid compound detection,” Proc. SPIE7356, 73561B, 73561B-8 (2009).
[CrossRef]

Boehm, J.

E. Gaganidze, K. Litfin, J. Boehm, and S. Finke, “Fabrication and characterization of single-mode integrated polymer waveguide components,” Proc. SPIE5451, 32–39 (2004).
[CrossRef]

Bonar, J.

G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004).
[CrossRef]

Burgmeier, J.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010).
[CrossRef] [PubMed]

Chen, X.

C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE7503, 750380, 750380-4 (2009).
[CrossRef]

Chu, P. L.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron.6(1), 54–68 (2000).
[CrossRef]

Emmerson, G.

S. Scheurich, S. Belle, R. Hellmann, S. So, I. J. G. Sparrow, and G. Emmerson, “Application of a silica-on-silicon planar optical waveguide Bragg grating sensor for organic liquid compound detection,” Proc. SPIE7356, 73561B, 73561B-8 (2009).
[CrossRef]

G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004).
[CrossRef]

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Emmerson, G. D.

S. Belle, S. Scheurich, R. Hellmann, S. So, I. J. G. Sparrow, and G. D. Emmerson, “Refractive index sensing for online monitoring water and ethanol content in bio fuels,” Proc. SPIE7726, 77261K, 77261K-6 (2010).
[CrossRef]

Erdogan, T.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett.29(6), 566–568 (1993).
[CrossRef]

Finke, S.

E. Gaganidze, K. Litfin, J. Boehm, and S. Finke, “Fabrication and characterization of single-mode integrated polymer waveguide components,” Proc. SPIE5451, 32–39 (2004).
[CrossRef]

Gaganidze, E.

E. Gaganidze, K. Litfin, J. Boehm, and S. Finke, “Fabrication and characterization of single-mode integrated polymer waveguide components,” Proc. SPIE5451, 32–39 (2004).
[CrossRef]

Gawith, C.

G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004).
[CrossRef]

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Geschke, O.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Glenn, W. H.

Hamza, A.

C. Wochnowski, M. Shamseldin, S. Metev, A. Hamza, and W. Juptner, “Mode field distribution of an integrated-optical waveguide generated by UV-laser radiation at the surface of a planar polymer chip,” Opt. Commun.262(1), 57–67 (2006).
[CrossRef]

Hamza, A. A.

M. Shams-el-Din, C. Wochnowski, S. Metev, A. A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci.236(1-4), 31–41 (2004).
[CrossRef]

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Heidrich, H.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010).
[CrossRef] [PubMed]

Hellmann, R.

M. Rosenberger, S. Belle, and R. Hellmann, “Detection of biochemical reaction and DNA hybridization using a planar Bragg grating sensor,” Proc. SPIE8073, 80730C, 80730C-7 (2011).
[CrossRef]

S. Belle, S. Scheurich, R. Hellmann, S. So, I. J. G. Sparrow, and G. D. Emmerson, “Refractive index sensing for online monitoring water and ethanol content in bio fuels,” Proc. SPIE7726, 77261K, 77261K-6 (2010).
[CrossRef]

S. Scheurich, S. Belle, R. Hellmann, S. So, I. J. G. Sparrow, and G. Emmerson, “Application of a silica-on-silicon planar optical waveguide Bragg grating sensor for organic liquid compound detection,” Proc. SPIE7356, 73561B, 73561B-8 (2009).
[CrossRef]

Henzi, P.

D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett.17(3), 591–593 (2005).
[CrossRef]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Hill, K.

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

Høiby, P. E.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Ibsen, M.

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Ishigure, T.

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Jensen, J. B.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

Juptner, W.

C. Wochnowski, M. Shamseldin, S. Metev, A. Hamza, and W. Juptner, “Mode field distribution of an integrated-optical waveguide generated by UV-laser radiation at the surface of a planar polymer chip,” Opt. Commun.262(1), 57–67 (2006).
[CrossRef]

Jüptner, W.

M. Shams-el-Din, C. Wochnowski, S. Metev, A. A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci.236(1-4), 31–41 (2004).
[CrossRef]

Kalli, K.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

Khan, L.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

Koch, J.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010).
[CrossRef] [PubMed]

Koerdt, M.

M. Koerdt and F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci.257(12), 5237–5240 (2011).
[CrossRef]

Koike, Y.

Kouamo, M. T.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE J. Sens.6(2), 331–339 (2006).
[CrossRef]

Ksendzov, A.

Laming, R.

G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004).
[CrossRef]

Lin, Y.

Litfin, K.

E. Gaganidze, K. Litfin, J. Boehm, and S. Finke, “Fabrication and characterization of single-mode integrated polymer waveguide components,” Proc. SPIE5451, 32–39 (2004).
[CrossRef]

Liu, H. Y.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

Lützow, P.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010).
[CrossRef] [PubMed]

McMeekin, S.

G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004).
[CrossRef]

Meltz, G.

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett.14(15), 823–825 (1989).
[CrossRef] [PubMed]

Metev, S.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE J. Sens.6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Shamseldin, S. Metev, A. Hamza, and W. Juptner, “Mode field distribution of an integrated-optical waveguide generated by UV-laser radiation at the surface of a planar polymer chip,” Opt. Commun.262(1), 57–67 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A.120(1), 44–52 (2005).
[CrossRef]

C. Wochnowski, M. Shamseldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil.89(2), 252–264 (2005).
[CrossRef]

M. Shams-el-Din, C. Wochnowski, S. Metev, A. A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci.236(1-4), 31–41 (2004).
[CrossRef]

Meteva, K.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE J. Sens.6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A.120(1), 44–52 (2005).
[CrossRef]

Mizrahi, V.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett.29(6), 566–568 (1993).
[CrossRef]

Mohr, J.

D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett.17(3), 591–593 (2005).
[CrossRef]

Morey, W. W.

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Nielsen, K.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

Nihei, E.

Orghici, R.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010).
[CrossRef] [PubMed]

Pedersen, L. H.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Peng, G.

Peng, G. D.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett.46(9), 643–644 (2010).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

Peng, G.-D.

C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE7503, 750380, 750380-4 (2009).
[CrossRef]

Pieper, W.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE J. Sens.6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A.120(1), 44–52 (2005).
[CrossRef]

Rabus, D. G.

D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett.17(3), 591–593 (2005).
[CrossRef]

Rasmussen, H. K.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

Rindorf, L.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Rosenberger, M.

M. Rosenberger, S. Belle, and R. Hellmann, “Detection of biochemical reaction and DNA hybridization using a planar Bragg grating sensor,” Proc. SPIE8073, 80730C, 80730C-7 (2011).
[CrossRef]

Schade, W.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010).
[CrossRef] [PubMed]

Scheurich, S.

S. Belle, S. Scheurich, R. Hellmann, S. So, I. J. G. Sparrow, and G. D. Emmerson, “Refractive index sensing for online monitoring water and ethanol content in bio fuels,” Proc. SPIE7726, 77261K, 77261K-6 (2010).
[CrossRef]

S. Scheurich, S. Belle, R. Hellmann, S. So, I. J. G. Sparrow, and G. Emmerson, “Application of a silica-on-silicon planar optical waveguide Bragg grating sensor for organic liquid compound detection,” Proc. SPIE7356, 73561B, 73561B-8 (2009).
[CrossRef]

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron.6(1), 54–68 (2000).
[CrossRef]

Shamseldin, M.

C. Wochnowski, M. Shamseldin, S. Metev, A. Hamza, and W. Juptner, “Mode field distribution of an integrated-optical waveguide generated by UV-laser radiation at the surface of a planar polymer chip,” Opt. Commun.262(1), 57–67 (2006).
[CrossRef]

C. Wochnowski, M. Shamseldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil.89(2), 252–264 (2005).
[CrossRef]

Shams-el-Din, M.

M. Shams-el-Din, C. Wochnowski, S. Metev, A. A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci.236(1-4), 31–41 (2004).
[CrossRef]

Smith, P.

G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004).
[CrossRef]

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

So, S.

S. Belle, S. Scheurich, R. Hellmann, S. So, I. J. G. Sparrow, and G. D. Emmerson, “Refractive index sensing for online monitoring water and ethanol content in bio fuels,” Proc. SPIE7726, 77261K, 77261K-6 (2010).
[CrossRef]

S. Scheurich, S. Belle, R. Hellmann, S. So, I. J. G. Sparrow, and G. Emmerson, “Application of a silica-on-silicon planar optical waveguide Bragg grating sensor for organic liquid compound detection,” Proc. SPIE7356, 73561B, 73561B-8 (2009).
[CrossRef]

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

Sparrow, I. J. G.

S. Belle, S. Scheurich, R. Hellmann, S. So, I. J. G. Sparrow, and G. D. Emmerson, “Refractive index sensing for online monitoring water and ethanol content in bio fuels,” Proc. SPIE7726, 77261K, 77261K-6 (2010).
[CrossRef]

S. Scheurich, S. Belle, R. Hellmann, S. So, I. J. G. Sparrow, and G. Emmerson, “Application of a silica-on-silicon planar optical waveguide Bragg grating sensor for organic liquid compound detection,” Proc. SPIE7356, 73561B, 73561B-8 (2009).
[CrossRef]

Stefani, A.

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

Tomlinson, W. J.

W. J. Tomlinson, “Photoinduced refractive index increase in Poly(methylmethacrylate) and its applications,” Appl. Phys. Lett.16(12), 486 (1970).
[CrossRef]

Vollertsen, F.

M. Koerdt and F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci.257(12), 5237–5240 (2011).
[CrossRef]

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE J. Sens.6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A.120(1), 44–52 (2005).
[CrossRef]

Waldvogel, S.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010).
[CrossRef] [PubMed]

Watts, S.

G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004).
[CrossRef]

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Webb, D.

Webb, D. J.

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett.46(9), 643–644 (2010).
[CrossRef]

C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE7503, 750380, 750380-4 (2009).
[CrossRef]

Welschoff, N.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010).
[CrossRef] [PubMed]

Wenke, G.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE J. Sens.6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A.120(1), 44–52 (2005).
[CrossRef]

White, A. E.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett.29(6), 566–568 (1993).
[CrossRef]

Williams, R.

G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004).
[CrossRef]

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

Wochnowski, C.

C. Wochnowski, M. Shamseldin, S. Metev, A. Hamza, and W. Juptner, “Mode field distribution of an integrated-optical waveguide generated by UV-laser radiation at the surface of a planar polymer chip,” Opt. Commun.262(1), 57–67 (2006).
[CrossRef]

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE J. Sens.6(2), 331–339 (2006).
[CrossRef]

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A.120(1), 44–52 (2005).
[CrossRef]

C. Wochnowski, M. Shamseldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil.89(2), 252–264 (2005).
[CrossRef]

M. Shams-el-Din, C. Wochnowski, S. Metev, A. A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci.236(1-4), 31–41 (2004).
[CrossRef]

Yuan, W.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
[CrossRef]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express19(20), 19731–19739 (2011).
[CrossRef] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

Zhang, C.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett.46(9), 643–644 (2010).
[CrossRef]

C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE7503, 750380, 750380-4 (2009).
[CrossRef]

Zhang, W.

W. Zhang, D. Webb, and G. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol.30(8), 1090–1096 (2012).
[CrossRef]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett.46(9), 643–644 (2010).
[CrossRef]

Anal. Bioanal. Chem.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

W. J. Tomlinson, “Photoinduced refractive index increase in Poly(methylmethacrylate) and its applications,” Appl. Phys. Lett.16(12), 486 (1970).
[CrossRef]

Appl. Surf. Sci.

M. Koerdt and F. Vollertsen, “Fabrication of an integrated optical Mach–Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation,” Appl. Surf. Sci.257(12), 5237–5240 (2011).
[CrossRef]

M. Shams-el-Din, C. Wochnowski, S. Metev, A. A. Hamza, and W. Jüptner, “Determination of the refractive index depth profile of an UV-laser generated waveguide in a planar polymer chip,” Appl. Surf. Sci.236(1-4), 31–41 (2004).
[CrossRef]

Electron. Lett.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett.29(6), 566–568 (1993).
[CrossRef]

G. Emmerson, S. Watts, C. Gawith, V. Albanis, M. Ibsen, R. Williams, and P. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett.38(24), 1531–1532 (2002).
[CrossRef]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett.46(9), 643–644 (2010).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett.47(4), 271–272 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron.6(1), 54–68 (2000).
[CrossRef]

IEEE J. Sens.

C. Wochnowski, M. T. Kouamo, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “Fabrication of a planar polymeric deformation Bragg sensor component by excimer laser radiation,” IEEE J. Sens.6(2), 331–339 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

D. G. Rabus, P. Henzi, and J. Mohr, “Photonic integrated circuits by DUV-induced modification of polymers,” IEEE Photon. Technol. Lett.17(3), 591–593 (2005).
[CrossRef]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Thermal tuning of polymer optical fiber Bragg gratings,” IEEE Photon. Technol. Lett.13(8), 824–826 (2001).
[CrossRef]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett.24(9), 763–765 (2012).
[CrossRef]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photon. Technol. Lett.24(5), 401–403 (2012).
[CrossRef]

J. Lightwave Technol.

K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15(8), 1263–1276 (1997).
[CrossRef]

W. Zhang, D. Webb, and G. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol.30(8), 1090–1096 (2012).
[CrossRef]

Opt. Commun.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun.284(1), 176–182 (2011).
[CrossRef]

C. Wochnowski, M. Shamseldin, S. Metev, A. Hamza, and W. Juptner, “Mode field distribution of an integrated-optical waveguide generated by UV-laser radiation at the surface of a planar polymer chip,” Opt. Commun.262(1), 57–67 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Polym. Degrad. Stabil.

C. Wochnowski, M. Shamseldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil.89(2), 252–264 (2005).
[CrossRef]

Proc Optoelectron, IEEE.

G. Emmerson, C. Gawith, S. Watts, R. Williams, P. Smith, S. McMeekin, J. Bonar, and R. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” Proc Optoelectron, IEEE.151(2), 119–122 (2004).
[CrossRef]

Proc. SPIE

S. Belle, S. Scheurich, R. Hellmann, S. So, I. J. G. Sparrow, and G. D. Emmerson, “Refractive index sensing for online monitoring water and ethanol content in bio fuels,” Proc. SPIE7726, 77261K, 77261K-6 (2010).
[CrossRef]

S. Scheurich, S. Belle, R. Hellmann, S. So, I. J. G. Sparrow, and G. Emmerson, “Application of a silica-on-silicon planar optical waveguide Bragg grating sensor for organic liquid compound detection,” Proc. SPIE7356, 73561B, 73561B-8 (2009).
[CrossRef]

M. Rosenberger, S. Belle, and R. Hellmann, “Detection of biochemical reaction and DNA hybridization using a planar Bragg grating sensor,” Proc. SPIE8073, 80730C, 80730C-7 (2011).
[CrossRef]

C. Zhang, X. Chen, D. J. Webb, and G.-D. Peng, “Water detection in jet fuel using a polymer optical fibre Bragg grating,” Proc. SPIE7503, 750380, 750380-4 (2009).
[CrossRef]

E. Gaganidze, K. Litfin, J. Boehm, and S. Finke, “Fabrication and characterization of single-mode integrated polymer waveguide components,” Proc. SPIE5451, 32–39 (2004).
[CrossRef]

Sens. Actua. A.

C. Wochnowski, M. Abuelqomsan, W. Pieper, K. Meteva, S. Metev, G. Wenke, and F. Vollertsen, “UV-laser assisted fabrication of Bragg sensor components in a planar polymer chip,” Sens. Actua. A.120(1), 44–52 (2005).
[CrossRef]

Sensors (Basel)

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel)10(7), 6788–6795 (2010).
[CrossRef] [PubMed]

Other

G. Emmerson, S. Watts, C. Gawith, V. Albanis, C. Riziotis, A. Fu, M. Ibsen, R. B. Williams, and P. G. Smith, “Directly UV-written planar channel waveguides containing simultaneously defined Bragg gratings,” Opt. Fiber Comm. Conf. MF52 (2003).

D. Wales, R. Parker, and J. Gates, “An integrated Bragg grating oxygen sensor using a hydrophobic sol-gel layer doped with an organic dye,” The European Conference on Lasers and Electro-Optics173306 (2011).

N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers” Ecole Polytechnique Federale de Lausanne (2008).

Raman Kashyap, Fiber Bragg Gratings (Academic Press, 2010).

M. Koerdt, Herstellung von integiert-optischen Sensorstrukturen in Polymersubstraten basierend auf Brechzahländerungen durch ultraviolette Laserstrahlung (BIAS Verlag Bremen, 2011).

A. Baum, P. J. Scully, W. Perrie, M. Sharp, K. G. Watkins, D. Jones, R. Issac, and D. A. Jaroszynski “NUV and NIR femtosecond laser modification of PMMA,” Proc. LPM2007, (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Configuration of the amplitude and the phase mask upon the PMMA chip for simultaneous writing of the optical waveguide and the Bragg grating. (b) Schematic drawing of the waveguide and the Bragg grating in bulk PMMA.

Fig. 2
Fig. 2

Experimental setup for analyzing the reflectance of polymer planar Bragg gratings.

Fig. 3
Fig. 3

Planar Bragg grating structure in a PMMA chip written with a single writing step using UV radiation. (a) confocal image of the PMMA surface; (b) topography of the grating located on top of the PMMA chip.

Fig. 4
Fig. 4

Mode field distribution measured at the back side of a planar Bragg grating.

Fig. 5
Fig. 5

(a) Reflected spectrum of a polymer planar Bragg grating showing a Bragg wavelength at 1558.5 nm and a flat baseline.(b) Transmission spectrum of a polymer Bragg grating measured with a multi-mode fiber showing a Bragg notch at 1558.5 nm.

Fig. 6
Fig. 6

Reflection of a planar Bragg grating in PMMA with and without index matching liquid (IML).

Fig. 7
Fig. 7

Relationship between the reflected Bragg wavelength and the relative humidity.

Metrics