Abstract

Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK modulation format conversion in a single silicon microring resonator with free spectral range equal to twice the signal bit rate is experimentally demonstrated for the first time at 41.6 Gb/s. By utilizing an optimized custom-made microring resonator with high coupling coefficient followed by an optical bandpass filter with appropriate bandwidth, good conversion performances for both modulation formats are achieved according to the converted signals eye diagrams and bit-error-rate measurements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett.30(22), 1868–1869 (1994).
    [CrossRef]
  2. C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical RZ to NRZ data format and wavelength conversion using an injection locked laser,” Opt. Commun.223(4–6), 309–313 (2003).
    [CrossRef]
  3. L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett.15(2), 308–310 (2003).
    [CrossRef]
  4. L. Banchi, M. Presi, A. D'Errico, G. Contestabile, and E. Ciaramella, “All-optical 10 and 40 Gbit/s RZ-to-NRZ format and wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol.28(1), 32–38 (2010).
    [CrossRef]
  5. Y. Yu, X. L. Zhang, and D. X. Huang, “Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion,” Opt. Commun.284(1), 129–135 (2011).
    [CrossRef]
  6. Y. Yu, B. R. Zou, W. H. Wu, and X. L. Zhang, “All-optical parallel NRZ-DPSK to RZ-DPSK format conversion at 40 Gb/s based on XPM effect in a single SOA,” Opt. Express19(15), 14720–14725 (2011).
    [CrossRef] [PubMed]
  7. Y. Yu, X. L. Zhang, and D. X. Huang, “All-optical format conversion from CS-RZ to NRZ at 40Gbit/s,” Opt. Express15(9), 5693–5698 (2007).
    [CrossRef] [PubMed]
  8. Y. Yu, X. L. Zhang, D. X. Huang, L. J. Li, and W. Fu, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett.19(14), 1027–1029 (2007).
    [CrossRef]
  9. Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
    [CrossRef]
  10. Y. H. Ding, C. Peucheret, M. H. Pu, B. Zsigri, J. Seoane, L. Liu, J. Xu, H. Y. Ou, X. L. Zhang, and D. X. Huang, “Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator,” Opt. Express18(20), 21121–21130 (2010).
    [CrossRef] [PubMed]
  11. A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7 Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett.15(1), 99–101 (2003).
    [CrossRef]
  12. T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, “A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise,” J. Lightwave Technol.21(9), 1933–1943 (2003).
    [CrossRef]
  13. P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett.24(3), 179–181 (2012).
    [CrossRef]
  14. Z. Zhang, Y. Yu, and X. L. Zhang, “Simultaneous all-optical demodulation and format conversion for multi-channel (CS)RZ-DPSK signals,” Opt. Express19(13), 12427–12433 (2011).
    [CrossRef] [PubMed]
  15. F. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Y. Zhang, M. Qiu, and Y. K. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express16(20), 15880–15886 (2008).
    [CrossRef] [PubMed]
  16. M. Xiong, Y. H. Ding, Q. Zhang, and X. L. Zhang, “All-optical clock recovery from 40 Gbit/s RZ signal based on microring resonators,” Appl. Opt.50(28), 5390–5396 (2011).
    [CrossRef] [PubMed]
  17. X. L. Cai, D. X. Huang, and X. L. Zhang, “Numerical analysis of polarization splitter based on vertically coupled microring resonator,” Opt. Express14(23), 11304–11311 (2006).
    [CrossRef] [PubMed]
  18. Y. H. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
    [CrossRef]

2012 (1)

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett.24(3), 179–181 (2012).
[CrossRef]

2011 (5)

2010 (2)

2009 (1)

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

2008 (1)

2007 (2)

Y. Yu, X. L. Zhang, and D. X. Huang, “All-optical format conversion from CS-RZ to NRZ at 40Gbit/s,” Opt. Express15(9), 5693–5698 (2007).
[CrossRef] [PubMed]

Y. Yu, X. L. Zhang, D. X. Huang, L. J. Li, and W. Fu, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett.19(14), 1027–1029 (2007).
[CrossRef]

2006 (1)

2003 (4)

C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical RZ to NRZ data format and wavelength conversion using an injection locked laser,” Opt. Commun.223(4–6), 309–313 (2003).
[CrossRef]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett.15(2), 308–310 (2003).
[CrossRef]

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7 Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett.15(1), 99–101 (2003).
[CrossRef]

T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, “A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise,” J. Lightwave Technol.21(9), 1933–1943 (2003).
[CrossRef]

1994 (1)

S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett.30(22), 1868–1869 (1994).
[CrossRef]

Abe, J.

Avramopoulos, H.

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett.24(3), 179–181 (2012).
[CrossRef]

Baby, V.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett.15(2), 308–310 (2003).
[CrossRef]

Banchi, L.

Bigo, S.

S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett.30(22), 1868–1869 (1994).
[CrossRef]

Bougioukos, M.

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett.24(3), 179–181 (2012).
[CrossRef]

Cai, X. L.

Chandrasekhar, S.

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7 Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett.15(1), 99–101 (2003).
[CrossRef]

Chow, C. W.

C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical RZ to NRZ data format and wavelength conversion using an injection locked laser,” Opt. Commun.223(4–6), 309–313 (2003).
[CrossRef]

Ciaramella, E.

Contestabile, G.

D'Errico, A.

Desruelle, B.

S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett.30(22), 1868–1869 (1994).
[CrossRef]

Desurvire, E.

S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett.30(22), 1868–1869 (1994).
[CrossRef]

Ding, Y. H.

Fu, W.

Y. Yu, X. L. Zhang, D. X. Huang, L. J. Li, and W. Fu, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett.19(14), 1027–1029 (2007).
[CrossRef]

Glesk, I.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett.15(2), 308–310 (2003).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7 Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett.15(1), 99–101 (2003).
[CrossRef]

Groumas, P.

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett.24(3), 179–181 (2012).
[CrossRef]

Huang, D.

Y. H. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

Huang, D. X.

Y. Yu, X. L. Zhang, and D. X. Huang, “Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion,” Opt. Commun.284(1), 129–135 (2011).
[CrossRef]

Y. H. Ding, C. Peucheret, M. H. Pu, B. Zsigri, J. Seoane, L. Liu, J. Xu, H. Y. Ou, X. L. Zhang, and D. X. Huang, “Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator,” Opt. Express18(20), 21121–21130 (2010).
[CrossRef] [PubMed]

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

Y. Yu, X. L. Zhang, and D. X. Huang, “All-optical format conversion from CS-RZ to NRZ at 40Gbit/s,” Opt. Express15(9), 5693–5698 (2007).
[CrossRef] [PubMed]

Y. Yu, X. L. Zhang, D. X. Huang, L. J. Li, and W. Fu, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett.19(14), 1027–1029 (2007).
[CrossRef]

X. L. Cai, D. X. Huang, and X. L. Zhang, “Numerical analysis of polarization splitter based on vertically coupled microring resonator,” Opt. Express14(23), 11304–11311 (2006).
[CrossRef] [PubMed]

Ishida, K.

Kasahara, K.

Katopodis, V.

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett.24(3), 179–181 (2012).
[CrossRef]

Kinjo, K.

Kobayashi, T.

Kouloumentas, C.

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett.24(3), 179–181 (2012).
[CrossRef]

Leuthold, J.

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7 Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett.15(1), 99–101 (2003).
[CrossRef]

Li, L. J.

Y. Yu, X. L. Zhang, D. X. Huang, L. J. Li, and W. Fu, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett.19(14), 1027–1029 (2007).
[CrossRef]

Liu, F. F.

Liu, L.

Y. H. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

Y. H. Ding, C. Peucheret, M. H. Pu, B. Zsigri, J. Seoane, L. Liu, J. Xu, H. Y. Ou, X. L. Zhang, and D. X. Huang, “Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator,” Opt. Express18(20), 21121–21130 (2010).
[CrossRef] [PubMed]

Mizuochi, T.

Motoshima, K.

Ou, H.

Y. H. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

Ou, H. Y.

Peucheret, C.

Y. H. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

Y. H. Ding, C. Peucheret, M. H. Pu, B. Zsigri, J. Seoane, L. Liu, J. Xu, H. Y. Ou, X. L. Zhang, and D. X. Huang, “Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator,” Opt. Express18(20), 21121–21130 (2010).
[CrossRef] [PubMed]

Presi, M.

Prucnal, P. R.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett.15(2), 308–310 (2003).
[CrossRef]

Pu, M. H.

Qiang, L.

Qiu, M.

Seoane, J.

Stulz, L.

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7 Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett.15(1), 99–101 (2003).
[CrossRef]

Su, Y. K.

Tsang, H. K.

C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical RZ to NRZ data format and wavelength conversion using an injection locked laser,” Opt. Commun.223(4–6), 309–313 (2003).
[CrossRef]

Wang, B. C.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett.15(2), 308–310 (2003).
[CrossRef]

Wang, T.

Wong, C. S.

C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical RZ to NRZ data format and wavelength conversion using an injection locked laser,” Opt. Commun.223(4–6), 309–313 (2003).
[CrossRef]

Wu, W. H.

Xiong, M.

Xu, E. M.

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

Xu, J.

Y. H. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

Y. H. Ding, C. Peucheret, M. H. Pu, B. Zsigri, J. Seoane, L. Liu, J. Xu, H. Y. Ou, X. L. Zhang, and D. X. Huang, “Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator,” Opt. Express18(20), 21121–21130 (2010).
[CrossRef] [PubMed]

Xu, L.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett.15(2), 308–310 (2003).
[CrossRef]

Ye, T.

Yu, Y.

Yvind, K.

Y. H. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

Zhang, Q.

Zhang, X.

Y. H. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

Zhang, X. L.

M. Xiong, Y. H. Ding, Q. Zhang, and X. L. Zhang, “All-optical clock recovery from 40 Gbit/s RZ signal based on microring resonators,” Appl. Opt.50(28), 5390–5396 (2011).
[CrossRef] [PubMed]

Y. Yu, X. L. Zhang, and D. X. Huang, “Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion,” Opt. Commun.284(1), 129–135 (2011).
[CrossRef]

Y. Yu, B. R. Zou, W. H. Wu, and X. L. Zhang, “All-optical parallel NRZ-DPSK to RZ-DPSK format conversion at 40 Gb/s based on XPM effect in a single SOA,” Opt. Express19(15), 14720–14725 (2011).
[CrossRef] [PubMed]

Z. Zhang, Y. Yu, and X. L. Zhang, “Simultaneous all-optical demodulation and format conversion for multi-channel (CS)RZ-DPSK signals,” Opt. Express19(13), 12427–12433 (2011).
[CrossRef] [PubMed]

Y. H. Ding, C. Peucheret, M. H. Pu, B. Zsigri, J. Seoane, L. Liu, J. Xu, H. Y. Ou, X. L. Zhang, and D. X. Huang, “Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator,” Opt. Express18(20), 21121–21130 (2010).
[CrossRef] [PubMed]

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

Y. Yu, X. L. Zhang, and D. X. Huang, “All-optical format conversion from CS-RZ to NRZ at 40Gbit/s,” Opt. Express15(9), 5693–5698 (2007).
[CrossRef] [PubMed]

Y. Yu, X. L. Zhang, D. X. Huang, L. J. Li, and W. Fu, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett.19(14), 1027–1029 (2007).
[CrossRef]

X. L. Cai, D. X. Huang, and X. L. Zhang, “Numerical analysis of polarization splitter based on vertically coupled microring resonator,” Opt. Express14(23), 11304–11311 (2006).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

Zhang, Z.

Zhang, Z. Y.

Zou, B. R.

Zsigri, B.

Appl. Opt. (1)

Electron. Lett. (1)

S. Bigo, E. Desurvire, and B. Desruelle, “All-optical RZ-to-NRZ format conversion at 10 Gbit/s with nonlinear optical loop mirror,” Electron. Lett.30(22), 1868–1869 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett.15(2), 308–310 (2003).
[CrossRef]

Y. Yu, X. L. Zhang, D. X. Huang, L. J. Li, and W. Fu, “20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals,” IEEE Photon. Technol. Lett.19(14), 1027–1029 (2007).
[CrossRef]

Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-optical format conversion from RZ to NRZ utilizing microfiber resonator,” IEEE Photon. Technol. Lett.21(17), 1202–1204 (2009).
[CrossRef]

A. H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7 Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett.15(1), 99–101 (2003).
[CrossRef]

P. Groumas, V. Katopodis, C. Kouloumentas, M. Bougioukos, and H. Avramopoulos, “All-optical RZ-to-NRZ conversion of advanced modulated signals,” IEEE Photon. Technol. Lett.24(3), 179–181 (2012).
[CrossRef]

Y. H. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (2)

Y. Yu, X. L. Zhang, and D. X. Huang, “Simultaneous all-optical multi-channel RZ and CSRZ to NRZ format conversion,” Opt. Commun.284(1), 129–135 (2011).
[CrossRef]

C. W. Chow, C. S. Wong, and H. K. Tsang, “All-optical RZ to NRZ data format and wavelength conversion using an injection locked laser,” Opt. Commun.223(4–6), 309–313 (2003).
[CrossRef]

Opt. Express (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Principle of the simultaneous format conversion. Eye diagrams of (a) input RZ-OOK and (b) RZ-DPSK at 41.6 Gb/s. (c) Spectrum of the input RZ signals (blue) and transfer function of the MRR with FSR of 83.2 GHz at the through port (green). Eye diagrams of (d) converted NRZ-OOK and (e) converted NRZ-DPSK after the MRR. (f) Spectrum of the converted NRZ signals after the MRR (green) and transfer function of the OBPF (red). Eye diagrams of (g) converted NRZ-OOK and (h) converted NRZ-DPSK after the OBPF. (i) Spectrum of the output NRZ signals (red) after the OBPF. In these simulations, the power coupling coefficient of the MRR is κ2 = 0.72 and the full-width at half-maximum of the Gaussian OBPF is 60 GHz.

Fig. 2
Fig. 2

Simulated eye diagrams of converted NRZ-OOK (red, top), NRZ-DPSK (blue, center), and NRZ-DPSK demodulated signals (blue, bottom) when (a) κ2 = 0.7 and FWHM = 80 GHz, (b) κ2 = 0.9 and FWHM = 80 GHz, (c) κ2 = 0.7 and FWHM = 32 GHz and (d) κ2 = 0.9 and FWHM = 32 GHz.

Fig. 3
Fig. 3

(a) Calculated amplitude ripple and (b) Q value of the converted NRZ-OOK versus MRR power coupling coefficient and OBPF 3-dB bandwidth at 41.6 Gb/s. (c) Amplitude ripple of the converted NRZ-DPSK and (d) Q value of the demodulated NRZ-DPSK signal versus MRR power coupling and OBPF 3-dB bandwidth at 41.6 Gb/s. (e) Amplitude ripple and Q value versus MRR power coupling coefficient for a 1-nm OBPF. Simulated eye diagrams with optimized power coupling of 0.9 for (f) converted NRZ-OOK, (g) converted NRZ-DPSK and (h) demodulated NRZ-DPSK signal after balanced detection with an OBPF of 1 nm.

Fig. 4
Fig. 4

(a) Cross section and transverse field distribution of the fundamental TM0 mode of the designed MRR bend rib waveguide. (b) Effective index for the TM0 mode as a function of wavelength. (c) Calculated coupling coefficient for the TM0 mode versus the width of the gap between the ring and the straight waveguide.

Fig. 5
Fig. 5

Scanning electron microscope (SEM) pictures of (a) top view and (b) coupling region of the MRR. (c) Silicon nano taper design. (d) Measured transmission spectrum at the through port of the MRR.

Fig. 6
Fig. 6

Experimental setup for modulation format conversion.

Fig. 7
Fig. 7

Measured spectra of the single channel (a) input RZ-OOK, converted NRZ-OOK after MRR, converted NRZ-OOK after OBPF and (b) input RZ-DPSK, converted NRZ-DPSK after MRR, converted NRZ-DPSK after OBPF. The resolution bandwidth is 0.2 nm. Eye diagrams of the single channel (c) input RZ-OOK, (d) converted NRZ-OOK after MRR, (e) converted NRZ-OOK after OBPF, (f) input RZ-DPSK, (g) converted NRZ-DPSK after MRR and (h) converted NRZ-DPSK after OBPF.

Fig. 8
Fig. 8

Measured eye diagrams of (a) input RZ-OOK (single channel), (b) input RZ-DPSK (single channel), (c) demodulated signal of the input RZ-DPSK after balanced detection, (d) converted NRZ-OOK (two-channel), (e) converted NRZ-DPSK (two-channel) and (f) demodulated signal of the converted NRZ-DPSK after balanced detection. (g) Spectra of the two-channel input RZ signals and the converted NRZ signals (resolution bandwidth: 0.2 nm).

Fig. 9
Fig. 9

BER measurements for (a) input RZ-OOK, converted NRZ-OOK for both single and two-channel operations, (b) input RZ-DPSK, converted NRZ- DPSK for both single and two-channel operations.

Fig. 10
Fig. 10

100 Gb/s simultaneous format conversion. Eye diagrams of (a) input RZ-OOK and (b) RZ-DPSK. (c) Spectrum of the input RZ signals (blue), transfer function of the MRR with FSR of 200 GHz at the through port (green) and transfer function of the OBPF (red). Eye diagrams of (d) converted NRZ-OOK and (e) converted NRZ-DPSK. (f) Spectrum of the converted NRZ signals. In the simulations, the power coupling coefficient of the MRR is κ2 = 0.9 and the full-width at half-maximum of the Gaussian OBPF is 150 GHz.

Metrics