Z. Liao, M. Al-Amri, and M.S. Zubairy, “Quantum lithography beyond the diffraction limit via Rabi oscillations,” Phys. Rev. Lett.105, 183601 (2010).

[CrossRef]

K. Vogel, F. Gleisberg, N. L. Harshman, P. Kazemi, R. Mack, L. Plimak, and W. P. Schleich, “Optimally focusing wave packets,” Chemical Physics375, 133–143 (2010).

[CrossRef]

R. Mack, V. P. Yakovlev, and W. P. Schleich, “Correlations in phase space and the creation of focusing wave packets,” J. Mod. Opt.57, 1437–1444 (2010).

[CrossRef]

A. Jaouadi, N. Gaaloul, B. Viaris de Lesegno, M. Telmini, L. Pruvost, and E. Charron, “Bose-Einstein condensation in dark power-law laser traps,” Phys. Rev. A82, 023613 (2010).

[CrossRef]

T. Reisinger, A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, “Poisson’s spot with molecules,” Phys. Rev. A79, 053823 (2009).

[CrossRef]

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, “Deterministic ultracold ion source targeting the Heisenberg limit,” Phys. Rev. Lett.102, 070501 (2009).

[CrossRef]
[PubMed]

W. B. Case, M. Tomandl, S. Deachapunya, and M. Arndt, “Realization of optical carpets in the Talbot and Talbot-Lau configurations,” Opt. Express17(23), 20966–20974 (2009).

[CrossRef]
[PubMed]

A. Turlapov, A. Tonyushkin, and T. Sleator, “Talbot-Lau effect for atomic de Broglie waves manipulated with light,” Phys. Rev. A71, 043612 (2005).

[CrossRef]

T. Kraemer, J. Herbig, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, “Optimized production of a cesium Bose-Einstein condensate,” App. Phys. B79, 1013–1019 (2004).

[CrossRef]

M. J. W. Hall, “Incompleteness of trajectory-based interpretations of quantum mechanics,” J. Phys. A: Math. Gen.37, 9549–9556 (2004).

[CrossRef]

M. Oberthaler and T. Pfau, “One-, two-and three-dimensional nanostructures with atom lithography,” J. Phys.: Condens. Matter15, R233–R255 (2003).

[CrossRef]

M. Andreata and D. Dodonov, “On shrinking and expansion of radial wave packets,” J. Phys. A: Math. Gen.36, 7113–7128 (2003).

[CrossRef]

O. Nairz, M. Arndt, and A. Zeilinger, “Quantum interference experiments with large molecules,” Am. J. Phys.71, 319–325 (2003).

[CrossRef]

See for example: M. Mützel, S. Tandler, D. Haubrich, D. Meschede, K. Peithmann, M. Flaspöhler, and K. Buse, “Atom lithography with a holographic light mask,” Phys. Rev. Lett.88, 083601 (2002).

[CrossRef]
[PubMed]

I. Bialynicki-Birula, M. A. Cirone, J. P. Dahl, M. Fedorov, and W. P. Schleich, “In- and outbound spreading of a free-particle s-wave,” Phys. Rev. Lett.89, 060404 (2002).

[CrossRef]
[PubMed]

M. Bozic, D. Arsenovic, and L. Vuskovic, “Transverse momentum distribution of atoms in an interferometer,” Z. Naturforsch.56a, 173–177 (2001).

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E64, 066613 (2001).

[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett.85, 2733–2736 (2000).

[CrossRef]
[PubMed]

T. Sleator, T. Pfau, V. Balykin, and J. Mlynek, “Imaging and focusing of an atomic beam with a large period standing light wave,” Appl. Phys. B.54, 375–379 (1992).

[CrossRef]

A. Zeilinger, R. Gähler, C. G. Shull, W. Treimer, and W. Mampe “Single- and double-slit diffraction of neutrons,” Rev. Mod. Phys.60, 1067–1073 (1988).

[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987).

[CrossRef]
[PubMed]

C. Jönsson, “Electron diffraction at multiple slits,” Am. J. Phys.42, 4–11 (1974).

[CrossRef]

J. A. Leavitt and F. A. Bills, “Single-slit diffraction pattern of a thermal atomic potassium beam,” Am. J. Phys.37, 905–912 (1969).

[CrossRef]

G. Möllenstedt and C. Jönsson, “Elektronenmehrfachinterferenz an regelmäßig hergestellen Feinspalten,” Z. f. Phys.155, 427–474 (1959).

[CrossRef]

J. Goldemberg and H. M. Nussenzveig, “On the possibility of the experimental observation of diffraction in time effects,” Rev. Mex. Fis.VI.3, 105–115 (1957).

In a seminal paper, Marcos Moshinsky studied the propagation of a matter wave suddenly released from a shutter. For this reason these functions are sometimes called Moshinsky functions. See M. Moshinsky, “Diffraction in time,” Phys. Rev.88, 625–631 (1952).

[CrossRef]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett.85, 2733–2736 (2000).

[CrossRef]
[PubMed]

Z. Liao, M. Al-Amri, and M.S. Zubairy, “Quantum lithography beyond the diffraction limit via Rabi oscillations,” Phys. Rev. Lett.105, 183601 (2010).

[CrossRef]

M. Andreata and D. Dodonov, “On shrinking and expansion of radial wave packets,” J. Phys. A: Math. Gen.36, 7113–7128 (2003).

[CrossRef]

W. B. Case, M. Tomandl, S. Deachapunya, and M. Arndt, “Realization of optical carpets in the Talbot and Talbot-Lau configurations,” Opt. Express17(23), 20966–20974 (2009).

[CrossRef]
[PubMed]

O. Nairz, M. Arndt, and A. Zeilinger, “Quantum interference experiments with large molecules,” Am. J. Phys.71, 319–325 (2003).

[CrossRef]

M. Bozic, D. Arsenovic, and L. Vuskovic, “Transverse momentum distribution of atoms in an interferometer,” Z. Naturforsch.56a, 173–177 (2001).

T. Sleator, T. Pfau, V. Balykin, and J. Mlynek, “Imaging and focusing of an atomic beam with a large period standing light wave,” Appl. Phys. B.54, 375–379 (1992).

[CrossRef]

I. Bialynicki-Birula, M. A. Cirone, J. P. Dahl, M. Fedorov, and W. P. Schleich, “In- and outbound spreading of a free-particle s-wave,” Phys. Rev. Lett.89, 060404 (2002).

[CrossRef]
[PubMed]

J. A. Leavitt and F. A. Bills, “Single-slit diffraction pattern of a thermal atomic potassium beam,” Am. J. Phys.37, 905–912 (1969).

[CrossRef]

M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon Press, London, 1964).

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett.85, 2733–2736 (2000).

[CrossRef]
[PubMed]

M. Bozic, D. Arsenovic, and L. Vuskovic, “Transverse momentum distribution of atoms in an interferometer,” Z. Naturforsch.56a, 173–177 (2001).

T. Reisinger, A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, “Poisson’s spot with molecules,” Phys. Rev. A79, 053823 (2009).

[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett.85, 2733–2736 (2000).

[CrossRef]
[PubMed]

See for example: M. Mützel, S. Tandler, D. Haubrich, D. Meschede, K. Peithmann, M. Flaspöhler, and K. Buse, “Atom lithography with a holographic light mask,” Phys. Rev. Lett.88, 083601 (2002).

[CrossRef]
[PubMed]

A. Jaouadi, N. Gaaloul, B. Viaris de Lesegno, M. Telmini, L. Pruvost, and E. Charron, “Bose-Einstein condensation in dark power-law laser traps,” Phys. Rev. A82, 023613 (2010).

[CrossRef]

T. Kraemer, J. Herbig, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, “Optimized production of a cesium Bose-Einstein condensate,” App. Phys. B79, 1013–1019 (2004).

[CrossRef]

I. Bialynicki-Birula, M. A. Cirone, J. P. Dahl, M. Fedorov, and W. P. Schleich, “In- and outbound spreading of a free-particle s-wave,” Phys. Rev. Lett.89, 060404 (2002).

[CrossRef]
[PubMed]

D. Courjon, Near-field Microscopy and Near-Field Optics (World Scientific Publishing, Singapore, 2003).

[CrossRef]

I. Bialynicki-Birula, M. A. Cirone, J. P. Dahl, M. Fedorov, and W. P. Schleich, “In- and outbound spreading of a free-particle s-wave,” Phys. Rev. Lett.89, 060404 (2002).

[CrossRef]
[PubMed]

M. Andreata and D. Dodonov, “On shrinking and expansion of radial wave packets,” J. Phys. A: Math. Gen.36, 7113–7128 (2003).

[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett.85, 2733–2736 (2000).

[CrossRef]
[PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987).

[CrossRef]
[PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987).

[CrossRef]
[PubMed]

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E64, 066613 (2001).

[CrossRef]

T. Reisinger, A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, “Poisson’s spot with molecules,” Phys. Rev. A79, 053823 (2009).

[CrossRef]

I. Bialynicki-Birula, M. A. Cirone, J. P. Dahl, M. Fedorov, and W. P. Schleich, “In- and outbound spreading of a free-particle s-wave,” Phys. Rev. Lett.89, 060404 (2002).

[CrossRef]
[PubMed]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, “Deterministic ultracold ion source targeting the Heisenberg limit,” Phys. Rev. Lett.102, 070501 (2009).

[CrossRef]
[PubMed]

T. Reisinger, A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, “Poisson’s spot with molecules,” Phys. Rev. A79, 053823 (2009).

[CrossRef]

See for example: M. Mützel, S. Tandler, D. Haubrich, D. Meschede, K. Peithmann, M. Flaspöhler, and K. Buse, “Atom lithography with a holographic light mask,” Phys. Rev. Lett.88, 083601 (2002).

[CrossRef]
[PubMed]

A. Jaouadi, N. Gaaloul, B. Viaris de Lesegno, M. Telmini, L. Pruvost, and E. Charron, “Bose-Einstein condensation in dark power-law laser traps,” Phys. Rev. A82, 023613 (2010).

[CrossRef]

A. Zeilinger, R. Gähler, C. G. Shull, W. Treimer, and W. Mampe “Single- and double-slit diffraction of neutrons,” Rev. Mod. Phys.60, 1067–1073 (1988).

[CrossRef]

K. Vogel, F. Gleisberg, N. L. Harshman, P. Kazemi, R. Mack, L. Plimak, and W. P. Schleich, “Optimally focusing wave packets,” Chemical Physics375, 133–143 (2010).

[CrossRef]

J. Goldemberg and H. M. Nussenzveig, “On the possibility of the experimental observation of diffraction in time effects,” Rev. Mex. Fis.VI.3, 105–115 (1957).

M. Gonçalves (personal communication, 2011).

T. Kraemer, J. Herbig, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, “Optimized production of a cesium Bose-Einstein condensate,” App. Phys. B79, 1013–1019 (2004).

[CrossRef]

M. J. W. Hall, “Incompleteness of trajectory-based interpretations of quantum mechanics,” J. Phys. A: Math. Gen.37, 9549–9556 (2004).

[CrossRef]

K. Vogel, F. Gleisberg, N. L. Harshman, P. Kazemi, R. Mack, L. Plimak, and W. P. Schleich, “Optimally focusing wave packets,” Chemical Physics375, 133–143 (2010).

[CrossRef]

See for example: M. Mützel, S. Tandler, D. Haubrich, D. Meschede, K. Peithmann, M. Flaspöhler, and K. Buse, “Atom lithography with a holographic light mask,” Phys. Rev. Lett.88, 083601 (2002).

[CrossRef]
[PubMed]

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E64, 066613 (2001).

[CrossRef]

T. Kraemer, J. Herbig, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, “Optimized production of a cesium Bose-Einstein condensate,” App. Phys. B79, 1013–1019 (2004).

[CrossRef]

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

T. Reisinger, A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, “Poisson’s spot with molecules,” Phys. Rev. A79, 053823 (2009).

[CrossRef]

A. Jaouadi, N. Gaaloul, B. Viaris de Lesegno, M. Telmini, L. Pruvost, and E. Charron, “Bose-Einstein condensation in dark power-law laser traps,” Phys. Rev. A82, 023613 (2010).

[CrossRef]

C. Jönsson, “Electron diffraction at multiple slits,” Am. J. Phys.42, 4–11 (1974).

[CrossRef]

G. Möllenstedt and C. Jönsson, “Elektronenmehrfachinterferenz an regelmäßig hergestellen Feinspalten,” Z. f. Phys.155, 427–474 (1959).

[CrossRef]

K. Vogel, F. Gleisberg, N. L. Harshman, P. Kazemi, R. Mack, L. Plimak, and W. P. Schleich, “Optimally focusing wave packets,” Chemical Physics375, 133–143 (2010).

[CrossRef]

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E64, 066613 (2001).

[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett.85, 2733–2736 (2000).

[CrossRef]
[PubMed]

T. Kraemer, J. Herbig, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, “Optimized production of a cesium Bose-Einstein condensate,” App. Phys. B79, 1013–1019 (2004).

[CrossRef]

J. A. Leavitt and F. A. Bills, “Single-slit diffraction pattern of a thermal atomic potassium beam,” Am. J. Phys.37, 905–912 (1969).

[CrossRef]

Z. Liao, M. Al-Amri, and M.S. Zubairy, “Quantum lithography beyond the diffraction limit via Rabi oscillations,” Phys. Rev. Lett.105, 183601 (2010).

[CrossRef]

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, “Deterministic ultracold ion source targeting the Heisenberg limit,” Phys. Rev. Lett.102, 070501 (2009).

[CrossRef]
[PubMed]

K. Vogel, F. Gleisberg, N. L. Harshman, P. Kazemi, R. Mack, L. Plimak, and W. P. Schleich, “Optimally focusing wave packets,” Chemical Physics375, 133–143 (2010).

[CrossRef]

R. Mack, V. P. Yakovlev, and W. P. Schleich, “Correlations in phase space and the creation of focusing wave packets,” J. Mod. Opt.57, 1437–1444 (2010).

[CrossRef]

A. Zeilinger, R. Gähler, C. G. Shull, W. Treimer, and W. Mampe “Single- and double-slit diffraction of neutrons,” Rev. Mod. Phys.60, 1067–1073 (1988).

[CrossRef]

T. Kraemer, J. Herbig, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, “Optimized production of a cesium Bose-Einstein condensate,” App. Phys. B79, 1013–1019 (2004).

[CrossRef]

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, “Deterministic ultracold ion source targeting the Heisenberg limit,” Phys. Rev. Lett.102, 070501 (2009).

[CrossRef]
[PubMed]

See for example: M. Mützel, S. Tandler, D. Haubrich, D. Meschede, K. Peithmann, M. Flaspöhler, and K. Buse, “Atom lithography with a holographic light mask,” Phys. Rev. Lett.88, 083601 (2002).

[CrossRef]
[PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987).

[CrossRef]
[PubMed]

T. Sleator, T. Pfau, V. Balykin, and J. Mlynek, “Imaging and focusing of an atomic beam with a large period standing light wave,” Appl. Phys. B.54, 375–379 (1992).

[CrossRef]

G. Möllenstedt and C. Jönsson, “Elektronenmehrfachinterferenz an regelmäßig hergestellen Feinspalten,” Z. f. Phys.155, 427–474 (1959).

[CrossRef]

In a seminal paper, Marcos Moshinsky studied the propagation of a matter wave suddenly released from a shutter. For this reason these functions are sometimes called Moshinsky functions. See M. Moshinsky, “Diffraction in time,” Phys. Rev.88, 625–631 (1952).

[CrossRef]

See for example: M. Mützel, S. Tandler, D. Haubrich, D. Meschede, K. Peithmann, M. Flaspöhler, and K. Buse, “Atom lithography with a holographic light mask,” Phys. Rev. Lett.88, 083601 (2002).

[CrossRef]
[PubMed]

T. Kraemer, J. Herbig, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, “Optimized production of a cesium Bose-Einstein condensate,” App. Phys. B79, 1013–1019 (2004).

[CrossRef]

O. Nairz, M. Arndt, and A. Zeilinger, “Quantum interference experiments with large molecules,” Am. J. Phys.71, 319–325 (2003).

[CrossRef]

L. Novotny, “The history of near-field optics” in Progress in Optics vol. 50, E. Wolf, ed. (Elsevier, Amsterdam, 2007) pp. 137–184.

[CrossRef]

J. Goldemberg and H. M. Nussenzveig, “On the possibility of the experimental observation of diffraction in time effects,” Rev. Mex. Fis.VI.3, 105–115 (1957).

M. Oberthaler and T. Pfau, “One-, two-and three-dimensional nanostructures with atom lithography,” J. Phys.: Condens. Matter15, R233–R255 (2003).

[CrossRef]

T. Reisinger, A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, “Poisson’s spot with molecules,” Phys. Rev. A79, 053823 (2009).

[CrossRef]

See for example: M. Mützel, S. Tandler, D. Haubrich, D. Meschede, K. Peithmann, M. Flaspöhler, and K. Buse, “Atom lithography with a holographic light mask,” Phys. Rev. Lett.88, 083601 (2002).

[CrossRef]
[PubMed]

M. Oberthaler and T. Pfau, “One-, two-and three-dimensional nanostructures with atom lithography,” J. Phys.: Condens. Matter15, R233–R255 (2003).

[CrossRef]

T. Sleator, T. Pfau, V. Balykin, and J. Mlynek, “Imaging and focusing of an atomic beam with a large period standing light wave,” Appl. Phys. B.54, 375–379 (1992).

[CrossRef]

K. Vogel, F. Gleisberg, N. L. Harshman, P. Kazemi, R. Mack, L. Plimak, and W. P. Schleich, “Optimally focusing wave packets,” Chemical Physics375, 133–143 (2010).

[CrossRef]

A. Jaouadi, N. Gaaloul, B. Viaris de Lesegno, M. Telmini, L. Pruvost, and E. Charron, “Bose-Einstein condensation in dark power-law laser traps,” Phys. Rev. A82, 023613 (2010).

[CrossRef]

T. Reisinger, A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, “Poisson’s spot with molecules,” Phys. Rev. A79, 053823 (2009).

[CrossRef]

T. Reisinger, A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, “Poisson’s spot with molecules,” Phys. Rev. A79, 053823 (2009).

[CrossRef]

E. Sadurní, W. B. Case, and W. P. Schleich, in preparation.

K. Vogel, F. Gleisberg, N. L. Harshman, P. Kazemi, R. Mack, L. Plimak, and W. P. Schleich, “Optimally focusing wave packets,” Chemical Physics375, 133–143 (2010).

[CrossRef]

R. Mack, V. P. Yakovlev, and W. P. Schleich, “Correlations in phase space and the creation of focusing wave packets,” J. Mod. Opt.57, 1437–1444 (2010).

[CrossRef]

I. Bialynicki-Birula, M. A. Cirone, J. P. Dahl, M. Fedorov, and W. P. Schleich, “In- and outbound spreading of a free-particle s-wave,” Phys. Rev. Lett.89, 060404 (2002).

[CrossRef]
[PubMed]

E. Sadurní, W. B. Case, and W. P. Schleich, in preparation.

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, “Deterministic ultracold ion source targeting the Heisenberg limit,” Phys. Rev. Lett.102, 070501 (2009).

[CrossRef]
[PubMed]

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, “Deterministic ultracold ion source targeting the Heisenberg limit,” Phys. Rev. Lett.102, 070501 (2009).

[CrossRef]
[PubMed]

A. Zeilinger, R. Gähler, C. G. Shull, W. Treimer, and W. Mampe “Single- and double-slit diffraction of neutrons,” Rev. Mod. Phys.60, 1067–1073 (1988).

[CrossRef]

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, “Deterministic ultracold ion source targeting the Heisenberg limit,” Phys. Rev. Lett.102, 070501 (2009).

[CrossRef]
[PubMed]

A. Turlapov, A. Tonyushkin, and T. Sleator, “Talbot-Lau effect for atomic de Broglie waves manipulated with light,” Phys. Rev. A71, 043612 (2005).

[CrossRef]

T. Sleator, T. Pfau, V. Balykin, and J. Mlynek, “Imaging and focusing of an atomic beam with a large period standing light wave,” Appl. Phys. B.54, 375–379 (1992).

[CrossRef]

T. Reisinger, A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, “Poisson’s spot with molecules,” Phys. Rev. A79, 053823 (2009).

[CrossRef]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

See for example: M. Mützel, S. Tandler, D. Haubrich, D. Meschede, K. Peithmann, M. Flaspöhler, and K. Buse, “Atom lithography with a holographic light mask,” Phys. Rev. Lett.88, 083601 (2002).

[CrossRef]
[PubMed]

A. Jaouadi, N. Gaaloul, B. Viaris de Lesegno, M. Telmini, L. Pruvost, and E. Charron, “Bose-Einstein condensation in dark power-law laser traps,” Phys. Rev. A82, 023613 (2010).

[CrossRef]

A. Turlapov, A. Tonyushkin, and T. Sleator, “Talbot-Lau effect for atomic de Broglie waves manipulated with light,” Phys. Rev. A71, 043612 (2005).

[CrossRef]

A. Zeilinger, R. Gähler, C. G. Shull, W. Treimer, and W. Mampe “Single- and double-slit diffraction of neutrons,” Rev. Mod. Phys.60, 1067–1073 (1988).

[CrossRef]

A. Turlapov, A. Tonyushkin, and T. Sleator, “Talbot-Lau effect for atomic de Broglie waves manipulated with light,” Phys. Rev. A71, 043612 (2005).

[CrossRef]

A. Jaouadi, N. Gaaloul, B. Viaris de Lesegno, M. Telmini, L. Pruvost, and E. Charron, “Bose-Einstein condensation in dark power-law laser traps,” Phys. Rev. A82, 023613 (2010).

[CrossRef]

K. Vogel, F. Gleisberg, N. L. Harshman, P. Kazemi, R. Mack, L. Plimak, and W. P. Schleich, “Optimally focusing wave packets,” Chemical Physics375, 133–143 (2010).

[CrossRef]

M. Bozic, D. Arsenovic, and L. Vuskovic, “Transverse momentum distribution of atoms in an interferometer,” Z. Naturforsch.56a, 173–177 (2001).

T. Kraemer, J. Herbig, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, “Optimized production of a cesium Bose-Einstein condensate,” App. Phys. B79, 1013–1019 (2004).

[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett.85, 2733–2736 (2000).

[CrossRef]
[PubMed]

M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon Press, London, 1964).

R. W. Wood, Physical Optics (Optical Society of America, Washington, 1988).

R. Mack, V. P. Yakovlev, and W. P. Schleich, “Correlations in phase space and the creation of focusing wave packets,” J. Mod. Opt.57, 1437–1444 (2010).

[CrossRef]

O. Nairz, M. Arndt, and A. Zeilinger, “Quantum interference experiments with large molecules,” Am. J. Phys.71, 319–325 (2003).

[CrossRef]

A. Zeilinger, R. Gähler, C. G. Shull, W. Treimer, and W. Mampe “Single- and double-slit diffraction of neutrons,” Rev. Mod. Phys.60, 1067–1073 (1988).

[CrossRef]

Z. Liao, M. Al-Amri, and M.S. Zubairy, “Quantum lithography beyond the diffraction limit via Rabi oscillations,” Phys. Rev. Lett.105, 183601 (2010).

[CrossRef]

C. Jönsson, “Electron diffraction at multiple slits,” Am. J. Phys.42, 4–11 (1974).

[CrossRef]

J. A. Leavitt and F. A. Bills, “Single-slit diffraction pattern of a thermal atomic potassium beam,” Am. J. Phys.37, 905–912 (1969).

[CrossRef]

O. Nairz, M. Arndt, and A. Zeilinger, “Quantum interference experiments with large molecules,” Am. J. Phys.71, 319–325 (2003).

[CrossRef]

T. Kraemer, J. Herbig, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, “Optimized production of a cesium Bose-Einstein condensate,” App. Phys. B79, 1013–1019 (2004).

[CrossRef]

T. Sleator, T. Pfau, V. Balykin, and J. Mlynek, “Imaging and focusing of an atomic beam with a large period standing light wave,” Appl. Phys. B.54, 375–379 (1992).

[CrossRef]

K. Vogel, F. Gleisberg, N. L. Harshman, P. Kazemi, R. Mack, L. Plimak, and W. P. Schleich, “Optimally focusing wave packets,” Chemical Physics375, 133–143 (2010).

[CrossRef]

R. Mack, V. P. Yakovlev, and W. P. Schleich, “Correlations in phase space and the creation of focusing wave packets,” J. Mod. Opt.57, 1437–1444 (2010).

[CrossRef]

M. Andreata and D. Dodonov, “On shrinking and expansion of radial wave packets,” J. Phys. A: Math. Gen.36, 7113–7128 (2003).

[CrossRef]

M. J. W. Hall, “Incompleteness of trajectory-based interpretations of quantum mechanics,” J. Phys. A: Math. Gen.37, 9549–9556 (2004).

[CrossRef]

M. Oberthaler and T. Pfau, “One-, two-and three-dimensional nanostructures with atom lithography,” J. Phys.: Condens. Matter15, R233–R255 (2003).

[CrossRef]

In a seminal paper, Marcos Moshinsky studied the propagation of a matter wave suddenly released from a shutter. For this reason these functions are sometimes called Moshinsky functions. See M. Moshinsky, “Diffraction in time,” Phys. Rev.88, 625–631 (1952).

[CrossRef]

A. Turlapov, A. Tonyushkin, and T. Sleator, “Talbot-Lau effect for atomic de Broglie waves manipulated with light,” Phys. Rev. A71, 043612 (2005).

[CrossRef]

T. Reisinger, A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, “Poisson’s spot with molecules,” Phys. Rev. A79, 053823 (2009).

[CrossRef]

A. Jaouadi, N. Gaaloul, B. Viaris de Lesegno, M. Telmini, L. Pruvost, and E. Charron, “Bose-Einstein condensation in dark power-law laser traps,” Phys. Rev. A82, 023613 (2010).

[CrossRef]

T. A. Klar, E. Engel, and S. W. Hell, “Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes,” Phys. Rev. E64, 066613 (2001).

[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987).

[CrossRef]
[PubMed]

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, “Deterministic ultracold ion source targeting the Heisenberg limit,” Phys. Rev. Lett.102, 070501 (2009).

[CrossRef]
[PubMed]

See for example: M. Mützel, S. Tandler, D. Haubrich, D. Meschede, K. Peithmann, M. Flaspöhler, and K. Buse, “Atom lithography with a holographic light mask,” Phys. Rev. Lett.88, 083601 (2002).

[CrossRef]
[PubMed]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett.85, 2733–2736 (2000).

[CrossRef]
[PubMed]

Z. Liao, M. Al-Amri, and M.S. Zubairy, “Quantum lithography beyond the diffraction limit via Rabi oscillations,” Phys. Rev. Lett.105, 183601 (2010).

[CrossRef]

I. Bialynicki-Birula, M. A. Cirone, J. P. Dahl, M. Fedorov, and W. P. Schleich, “In- and outbound spreading of a free-particle s-wave,” Phys. Rev. Lett.89, 060404 (2002).

[CrossRef]
[PubMed]

J. Goldemberg and H. M. Nussenzveig, “On the possibility of the experimental observation of diffraction in time effects,” Rev. Mex. Fis.VI.3, 105–115 (1957).

A. Zeilinger, R. Gähler, C. G. Shull, W. Treimer, and W. Mampe “Single- and double-slit diffraction of neutrons,” Rev. Mod. Phys.60, 1067–1073 (1988).

[CrossRef]

G. Möllenstedt and C. Jönsson, “Elektronenmehrfachinterferenz an regelmäßig hergestellen Feinspalten,” Z. f. Phys.155, 427–474 (1959).

[CrossRef]

M. Bozic, D. Arsenovic, and L. Vuskovic, “Transverse momentum distribution of atoms in an interferometer,” Z. Naturforsch.56a, 173–177 (2001).

M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon Press, London, 1964).

L. Novotny, “The history of near-field optics” in Progress in Optics vol. 50, E. Wolf, ed. (Elsevier, Amsterdam, 2007) pp. 137–184.

[CrossRef]

D. Courjon, Near-field Microscopy and Near-Field Optics (World Scientific Publishing, Singapore, 2003).

[CrossRef]

E. Sadurní, W. B. Case, and W. P. Schleich, in preparation.

M. Gonçalves (personal communication, 2011).

The paraxial approximation is expected to hold as long as the wavelength is much less than the slit width.

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).

R. W. Wood, Physical Optics (Optical Society of America, Washington, 1988).