Abstract

This work investigates the Bidirectional Scatter Distribution Function (BSDF) at incident angles other than normal and at 544-nm wavelength of a Guided Mode Resonance Filter (GMRF) Photonic Crystal (PC) structure designed for normally incident light at 532 nm. Strong out-coupling of PC diffraction orders into both the transmitted and reflected hemispheres was observed specifically at a 25.7° incidence angle, which we attribute to this incident angle/wavelength pair being a good match to the ( ± 1, 0) PC grating mode. BSDF measurements at incident angles of 15° and 35° also displayed some out-coupled diffraction, though much lower in magnitude, and are also attributed to being a weaker match to the ( ± 1, 0) PC grating mode. Three-dimensional finite-difference time-domain Maxwell's equation simulations demonstrate that since this GMRF was designed for complete destructive interference of the transmitted light upon normal incidence, stronger out-coupling of the diffraction is expected for modal solutions as the angle of incidence increases.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett.101(7), 073901 (2008).
    [CrossRef] [PubMed]
  2. S. N. Tandon, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, and L. A. Kolodziejski, “The superprism effect using large area 2D-periodic photonic crystal slabs,” Photon. Nano. Fund. Appl.3(1), 10–18 (2005).
    [CrossRef]
  3. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999).
    [CrossRef]
  4. H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett.93(17), 171108 (2008).
    [CrossRef]
  5. I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94(19), 191102 (2009).
    [CrossRef]
  6. T. R. Nielsen, A. Lavrinenko, and J. Mork, “Slow light in quantum dot photonic crystal waveguides,” Appl. Phys. Lett.94(11), 113111 (2009).
    [CrossRef]
  7. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
    [CrossRef]
  8. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  9. N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett.88(7), 071110 (2006).
    [CrossRef]
  10. F. Yang, G. Yen, and B. T. Cunningham, “Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding,” Opt. Express18(11), 11846–11858 (2010).
    [CrossRef] [PubMed]
  11. T. Sun and D. Wu, “Guided-mode resonance excitation on multimode planar periodic waveguide,” J. Appl. Phys.108(6), 063106 (2010).
    [CrossRef]
  12. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt.4(10), 1275–1299 (1965).
    [CrossRef]
  13. P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt.46(12), 2351–2360 (2007).
    [CrossRef] [PubMed]
  14. I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric grating-based nanophotonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
    [CrossRef]
  15. F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
    [CrossRef]
  16. I. Abdulhalim, “Anisotropic layers in waveguides for mode tuning and tunable filtering,” Proc. SPIE6135, 61350R, 61350R-10 (2006).
    [CrossRef]
  17. F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett.90(26), 261109 (2007).
    [CrossRef]
  18. D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt.45(28), 7286–7293 (2006).
    [CrossRef] [PubMed]
  19. I. Abdulhalim, “Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit,” Appl. Opt.46(12), 2219–2228 (2007).
    [CrossRef] [PubMed]
  20. S.-T. Wu, M. S. Li, and A. Y.-G. Fuh, “Observation of conical scattering cones from a two-dimensional hexagonal photonic crystal based on a polymer-dispersed liquid crystal,” Opt. Lett.33(23), 2758–2760 (2008).
    [CrossRef] [PubMed]
  21. J. Boulengueza, S. Berthiera, and J. P. Vigneron, “Simulations tools for natural photonic structures,” Physica B394(2), 217–220 (2007).
    [CrossRef]
  22. D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express17(1), 193–202 (2009).
    [CrossRef] [PubMed]
  23. E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics5(1), 053525 (2011).
    [CrossRef]
  24. R. V. Nair and R. Vijaya, “Observation of higher-order diffraction features in self-assembled photonic crystals,” Phys. Rev. A76(5), 053805 (2007).
    [CrossRef]
  25. J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
    [CrossRef]
  26. I. Kallioniemi, J. Saarinen, and E. Oja, “Optical scatterometry of subwavelength diffraction gratings: neural-network approach,” Appl. Opt.37(25), 5830–5835 (1998).
    [CrossRef] [PubMed]
  27. C. J. Raymond, M. R. Murnane, S. Sohail, H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B13(4), 1484–1495 (1995).
    [CrossRef]
  28. B. L. Balling, “A comparative study of the bidirectional reflectance distribution function of several surfaces as a mid-wave infrared diffuse reflectance standard,” MSEE thesis, Air Force Institute of Technology, 2009.
  29. T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane,” Rev. Sci. Instrum.70(9), 3688–3695 (1999).
    [CrossRef]

2011 (1)

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics5(1), 053525 (2011).
[CrossRef]

2010 (2)

T. Sun and D. Wu, “Guided-mode resonance excitation on multimode planar periodic waveguide,” J. Appl. Phys.108(6), 063106 (2010).
[CrossRef]

F. Yang, G. Yen, and B. T. Cunningham, “Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding,” Opt. Express18(11), 11846–11858 (2010).
[CrossRef] [PubMed]

2009 (4)

D. G. Stavenga, H. L. Leertouwer, P. Pirih, and M. F. Wehling, “Imaging scatterometry of butterfly wing scales,” Opt. Express17(1), 193–202 (2009).
[CrossRef] [PubMed]

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94(19), 191102 (2009).
[CrossRef]

T. R. Nielsen, A. Lavrinenko, and J. Mork, “Slow light in quantum dot photonic crystal waveguides,” Appl. Phys. Lett.94(11), 113111 (2009).
[CrossRef]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

2008 (4)

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett.101(7), 073901 (2008).
[CrossRef] [PubMed]

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett.93(17), 171108 (2008).
[CrossRef]

S.-T. Wu, M. S. Li, and A. Y.-G. Fuh, “Observation of conical scattering cones from a two-dimensional hexagonal photonic crystal based on a polymer-dispersed liquid crystal,” Opt. Lett.33(23), 2758–2760 (2008).
[CrossRef] [PubMed]

2007 (6)

I. Abdulhalim, “Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit,” Appl. Opt.46(12), 2219–2228 (2007).
[CrossRef] [PubMed]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt.46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett.90(26), 261109 (2007).
[CrossRef]

R. V. Nair and R. Vijaya, “Observation of higher-order diffraction features in self-assembled photonic crystals,” Phys. Rev. A76(5), 053805 (2007).
[CrossRef]

J. Boulengueza, S. Berthiera, and J. P. Vigneron, “Simulations tools for natural photonic structures,” Physica B394(2), 217–220 (2007).
[CrossRef]

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric grating-based nanophotonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
[CrossRef]

2006 (3)

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett.88(7), 071110 (2006).
[CrossRef]

I. Abdulhalim, “Anisotropic layers in waveguides for mode tuning and tunable filtering,” Proc. SPIE6135, 61350R, 61350R-10 (2006).
[CrossRef]

D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt.45(28), 7286–7293 (2006).
[CrossRef] [PubMed]

2005 (1)

S. N. Tandon, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, and L. A. Kolodziejski, “The superprism effect using large area 2D-periodic photonic crystal slabs,” Photon. Nano. Fund. Appl.3(1), 10–18 (2005).
[CrossRef]

2000 (1)

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

1999 (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999).
[CrossRef]

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane,” Rev. Sci. Instrum.70(9), 3688–3695 (1999).
[CrossRef]

1998 (1)

1995 (1)

C. J. Raymond, M. R. Murnane, S. Sohail, H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B13(4), 1484–1495 (1995).
[CrossRef]

1993 (1)

1965 (1)

Abdulhalim, I.

I. Abdulhalim, “Simplified optical scatterometry for periodic nanoarrays in the near-quasi-static limit,” Appl. Opt.46(12), 2219–2228 (2007).
[CrossRef] [PubMed]

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric grating-based nanophotonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
[CrossRef]

I. Abdulhalim, “Anisotropic layers in waveguides for mode tuning and tunable filtering,” Proc. SPIE6135, 61350R, 61350R-10 (2006).
[CrossRef]

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Algora, C.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94(19), 191102 (2009).
[CrossRef]

Allgair, J.

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Andreani, L. C.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Asmail, C. C.

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane,” Rev. Sci. Instrum.70(9), 3688–3695 (1999).
[CrossRef]

Auslender, M.

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric grating-based nanophotonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
[CrossRef]

Barthou, C.

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics5(1), 053525 (2011).
[CrossRef]

Belotti, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Benoit, D.

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Berthier, S.

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics5(1), 053525 (2011).
[CrossRef]

Berthiera, S.

J. Boulengueza, S. Berthiera, and J. P. Vigneron, “Simulations tools for natural photonic structures,” Physica B394(2), 217–220 (2007).
[CrossRef]

Boulengueza, J.

J. Boulengueza, S. Berthiera, and J. P. Vigneron, “Simulations tools for natural photonic structures,” Physica B394(2), 217–220 (2007).
[CrossRef]

Braymer, B.

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Caglayan, H.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett.93(17), 171108 (2008).
[CrossRef]

Cakmak, O.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett.93(17), 171108 (2008).
[CrossRef]

Chan, L. L.

Cluzel, B.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett.101(7), 073901 (2008).
[CrossRef] [PubMed]

Colak, E.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett.93(17), 171108 (2008).
[CrossRef]

Cunningham, B. T.

F. Yang, G. Yen, and B. T. Cunningham, “Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding,” Opt. Express18(11), 11846–11858 (2010).
[CrossRef] [PubMed]

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett.90(26), 261109 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt.46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett.88(7), 071110 (2006).
[CrossRef]

D. W. Dobbs and B. T. Cunningham, “Optically tunable guided-mode resonance filter,” Appl. Opt.45(28), 7286–7293 (2006).
[CrossRef] [PubMed]

de Fornel, F.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett.101(7), 073901 (2008).
[CrossRef] [PubMed]

Dobbs, D. W.

Fabre, N.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett.101(7), 073901 (2008).
[CrossRef] [PubMed]

Faeyrman, M.

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Fuh, A. Y.-G.

Galiana, B.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94(19), 191102 (2009).
[CrossRef]

Galli, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Ganesh, N.

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface,” Appl. Opt.46(12), 2351–2360 (2007).
[CrossRef] [PubMed]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett.88(7), 071110 (2006).
[CrossRef]

Germer, T. A.

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane,” Rev. Sci. Instrum.70(9), 3688–3695 (1999).
[CrossRef]

Hava, S.

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric grating-based nanophotonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
[CrossRef]

Hershey, R.

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Hessel, A.

Joannopoulos, J. D.

S. N. Tandon, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, and L. A. Kolodziejski, “The superprism effect using large area 2D-periodic photonic crystal slabs,” Photon. Nano. Fund. Appl.3(1), 10–18 (2005).
[CrossRef]

Kallioniemi, I.

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999).
[CrossRef]

Kolodziejski, L. A.

S. N. Tandon, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, and L. A. Kolodziejski, “The superprism effect using large area 2D-periodic photonic crystal slabs,” Photon. Nano. Fund. Appl.3(1), 10–18 (2005).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999).
[CrossRef]

Krauss, T. F.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Kurt, H.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett.93(17), 171108 (2008).
[CrossRef]

Lalouat, L.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett.101(7), 073901 (2008).
[CrossRef] [PubMed]

Lavrinenko, A.

T. R. Nielsen, A. Lavrinenko, and J. Mork, “Slow light in quantum dot photonic crystal waveguides,” Appl. Phys. Lett.94(11), 113111 (2009).
[CrossRef]

Leertouwer, H. L.

Li, M. S.

Lippens, D.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett.101(7), 073901 (2008).
[CrossRef] [PubMed]

Litt, L. C.

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Magnusson, R.

Martínez, L. J.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94(19), 191102 (2009).
[CrossRef]

Mathias, P. C.

McNeil, J. R.

C. J. Raymond, M. R. Murnane, S. Sohail, H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B13(4), 1484–1495 (1995).
[CrossRef]

Mélique, X.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett.101(7), 073901 (2008).
[CrossRef] [PubMed]

Mork, J.

T. R. Nielsen, A. Lavrinenko, and J. Mork, “Slow light in quantum dot photonic crystal waveguides,” Appl. Phys. Lett.94(11), 113111 (2009).
[CrossRef]

Murnane, M. R.

C. J. Raymond, M. R. Murnane, S. Sohail, H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B13(4), 1484–1495 (1995).
[CrossRef]

Nair, R. V.

R. V. Nair and R. Vijaya, “Observation of higher-order diffraction features in self-assembled photonic crystals,” Phys. Rev. A76(5), 053805 (2007).
[CrossRef]

Naqvi, H.

C. J. Raymond, M. R. Murnane, S. Sohail, H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B13(4), 1484–1495 (1995).
[CrossRef]

Nielsen, T. R.

T. R. Nielsen, A. Lavrinenko, and J. Mork, “Slow light in quantum dot photonic crystal waveguides,” Appl. Phys. Lett.94(11), 113111 (2009).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999).
[CrossRef]

O’Faolain, L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Oja, E.

Oliner, A. A.

Ozbay, E.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett.93(17), 171108 (2008).
[CrossRef]

Petrich, G. S.

S. N. Tandon, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, and L. A. Kolodziejski, “The superprism effect using large area 2D-periodic photonic crystal slabs,” Photon. Nano. Fund. Appl.3(1), 10–18 (2005).
[CrossRef]

Pirih, P.

Portalupi, S. L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Postigo, P. A.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94(19), 191102 (2009).
[CrossRef]

Prieto, I.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94(19), 191102 (2009).
[CrossRef]

Rasigade, G.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

Raymond, C. J.

C. J. Raymond, M. R. Murnane, S. Sohail, H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B13(4), 1484–1495 (1995).
[CrossRef]

Rey-Stolle, I.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94(19), 191102 (2009).
[CrossRef]

Robinson, J. C.

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Saarinen, J.

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999).
[CrossRef]

Seligson, J.

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Soares, J. A. N. T.

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

Sohail, S.

C. J. Raymond, M. R. Murnane, S. Sohail, H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B13(4), 1484–1495 (1995).
[CrossRef]

Soljacic, M.

S. N. Tandon, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, and L. A. Kolodziejski, “The superprism effect using large area 2D-periodic photonic crystal slabs,” Photon. Nano. Fund. Appl.3(1), 10–18 (2005).
[CrossRef]

Stavenga, D. G.

Sun, T.

T. Sun and D. Wu, “Guided-mode resonance excitation on multimode planar periodic waveguide,” J. Appl. Phys.108(6), 063106 (2010).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999).
[CrossRef]

Tandon, S. N.

S. N. Tandon, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, and L. A. Kolodziejski, “The superprism effect using large area 2D-periodic photonic crystal slabs,” Photon. Nano. Fund. Appl.3(1), 10–18 (2005).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999).
[CrossRef]

Van Hooijdonk, E.

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics5(1), 053525 (2011).
[CrossRef]

Vanbésien, O.

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett.101(7), 073901 (2008).
[CrossRef] [PubMed]

Vigneron, J. P.

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics5(1), 053525 (2011).
[CrossRef]

J. Boulengueza, S. Berthiera, and J. P. Vigneron, “Simulations tools for natural photonic structures,” Physica B394(2), 217–220 (2007).
[CrossRef]

Vijaya, R.

R. V. Nair and R. Vijaya, “Observation of higher-order diffraction features in self-assembled photonic crystals,” Phys. Rev. A76(5), 053805 (2007).
[CrossRef]

Wang, S. S.

Wehling, M. F.

Whitney, U.

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Wu, D.

T. Sun and D. Wu, “Guided-mode resonance excitation on multimode planar periodic waveguide,” J. Appl. Phys.108(6), 063106 (2010).
[CrossRef]

Wu, S.-T.

Xu, Y.

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Yang, F.

F. Yang, G. Yen, and B. T. Cunningham, “Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding,” Opt. Express18(11), 11846–11858 (2010).
[CrossRef] [PubMed]

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett.90(26), 261109 (2007).
[CrossRef]

Yen, G.

F. Yang, G. Yen, and B. T. Cunningham, “Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding,” Opt. Express18(11), 11846–11858 (2010).
[CrossRef] [PubMed]

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett.90(26), 261109 (2007).
[CrossRef]

Zalicki, P.

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (8)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett.74(9), 1212–1214 (1999).
[CrossRef]

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett.93(17), 171108 (2008).
[CrossRef]

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94(19), 191102 (2009).
[CrossRef]

T. R. Nielsen, A. Lavrinenko, and J. Mork, “Slow light in quantum dot photonic crystal waveguides,” Appl. Phys. Lett.94(11), 113111 (2009).
[CrossRef]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett.88(7), 071110 (2006).
[CrossRef]

F. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

F. Yang, G. Yen, and B. T. Cunningham, “Voltage-tuned resonant reflectance optical filter for visible wavelengths fabricated by nanoreplica molding,” Appl. Phys. Lett.90(26), 261109 (2007).
[CrossRef]

J. Appl. Phys. (1)

T. Sun and D. Wu, “Guided-mode resonance excitation on multimode planar periodic waveguide,” J. Appl. Phys.108(6), 063106 (2010).
[CrossRef]

J. Nanophotonics (2)

I. Abdulhalim, M. Auslender, and S. Hava, “Resonant and scatterometric grating-based nanophotonic structures for biosensing,” J. Nanophotonics1(1), 011680 (2007).
[CrossRef]

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophotonics5(1), 053525 (2011).
[CrossRef]

J. Vac. Sci. Technol. B (1)

C. J. Raymond, M. R. Murnane, S. Sohail, H. Naqvi, and J. R. McNeil, “Metrology of subwavelength photoresist gratings using optical scatterometry,” J. Vac. Sci. Technol. B13(4), 1484–1495 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Photon. Nano. Fund. Appl. (1)

S. N. Tandon, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, and L. A. Kolodziejski, “The superprism effect using large area 2D-periodic photonic crystal slabs,” Photon. Nano. Fund. Appl.3(1), 10–18 (2005).
[CrossRef]

Phys. Rev. A (1)

R. V. Nair and R. Vijaya, “Observation of higher-order diffraction features in self-assembled photonic crystals,” Phys. Rev. A76(5), 053805 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

N. Fabre, L. Lalouat, B. Cluzel, X. Mélique, D. Lippens, F. de Fornel, and O. Vanbésien, “Optical near-field microscopy of light focusing through a photonic crystal flat lens,” Phys. Rev. Lett.101(7), 073901 (2008).
[CrossRef] [PubMed]

Physica B (1)

J. Boulengueza, S. Berthiera, and J. P. Vigneron, “Simulations tools for natural photonic structures,” Physica B394(2), 217–220 (2007).
[CrossRef]

Proc. SPIE (2)

I. Abdulhalim, “Anisotropic layers in waveguides for mode tuning and tunable filtering,” Proc. SPIE6135, 61350R, 61350R-10 (2006).
[CrossRef]

J. Allgair, D. Benoit, R. Hershey, L. C. Litt, I. Abdulhalim, B. Braymer, M. Faeyrman, J. C. Robinson, U. Whitney, Y. Xu, P. Zalicki, and J. Seligson, “Manufacturing considerations for implementation of scatterometry for process monitoring,” Proc. SPIE3998, 125–134 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

T. A. Germer and C. C. Asmail, “Goniometric optical scatter instrument for out-of-plane,” Rev. Sci. Instrum.70(9), 3688–3695 (1999).
[CrossRef]

Other (1)

B. L. Balling, “A comparative study of the bidirectional reflectance distribution function of several surfaces as a mid-wave infrared diffuse reflectance standard,” MSEE thesis, Air Force Institute of Technology, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig.
       1
Fig. 1

(left) SEM view of the nanoreplica mold from a 2-D square lattice PC silicon master. The master is comprised of posts resulting in a nanoreplica mold of 2D square lattice of holes. (right) Cross section schematic view of a 3-PC stack filter with 300-nm period, hole depth of 150 nm, and TiO2 thickness of 67 nm. The schematic cross section is not to scale, as the UVCP layers (layers 1, 3, and 5) are each ~5 μm thick, and the PET substrate is ~250 μm thick [10].

Fig.
       2
Fig. 2

Measured transmittance of the 2-D GMRF for plane of incidence parallel to the grating periodicity (ϕ = 0) for (a) p-, (b) s- and (c) un-polarized light, and (d) plane of incidence at 45° from the grating periodicity (ϕ = 45°). θi steps were made in 5° increments, except in (c) and (d) near the angle of interest, 25°, where 1° steps were made. (e) and (f) Solutions to grating-coupled waveguide analysis of Eq. (5) scaled by Snell's law as described in Eq. (2) for (e) ϕ = 0 and (f) ϕ = 45°. Here, neff = λθ = 0,m = 1/Λ = 532nm/300nm, the design wavelength and periodicity of the measured GRMF.

Fig.
       3
Fig. 3

Cross section schematic view of the simulated GMRF structure. The unit cell consists one period (Λ = 300 nm) in the x- and y-directions and a 600-nm span in the z-direction. t = 0.25 μm. ε1 = 2.13 and εa = 5.86.

Fig.
       4
Fig. 4

Simulated transmittance and reflectance of the 2-D GRMF structure as a function of incident angle and wavelength for ϕ = 0. (a) and (b) Transmittance for p- and s-polarizations. (c) and (d) Reflectance for p- and s-polarizations. (e) and (f) Transmittance for un-polarized light for ϕ = 0 and ϕ = 45°.

Fig.
       5
Fig. 5

In-plane Log(BTDF) of GMRF structure measured at λ = 544 nm for (a) p- and (b) s-polarizations, and in-plane Log(BRDF) measurements for (c) p- and (d) s-polarizations. Note that the collinear transmittance/specular reflectance peaks at θi = θt,r have magnitudes greater than 10 Sr−1 as do the m = −1 diffraction order peaks in (c) and (d).

Fig.
       6
Fig. 6

(a) and (b) In-plane Log(BSDF) of the GMRF (design wavelength of 532 nm) measured at 544 nm at θi = 25.7°. BTDF is shown in red and BRDF in blue. (a) Log-linear plot: The BRDF occlusion region around θr = −25.7° is due to the detector blocking the incident beam. (b) Log-polar plot: The green arrow shows the incident angle of 25.7°. (c) Photo of both in-plane and out-of-plane reflected scatter centered about the specular direction at θi = 25.7°. (d) and (e) Out-of-plane Log(BRDF) at θi = 25.7° for (d) p- and (e) s-polarizations.

Fig.
       7
Fig. 7

Normalized x/y transmission for seven points along the (0, −1), ( ± 1, 0) and (0, 1) modes corresponding to the λ and θi points shown in the inset. The inset shows the transmittance of s-polarized radiation as a function of wavelength and incident angle. The A, B, and C points on the inset correspond to the λ and θi values at which the grating orders are plotted in Fig. 8.

Fig.
       8
Fig. 8

Spherical plots of grating orders and their directions. (A) λ = 532 nm and θi = 0°, (B) λ = 700 nm and θi = 25°, and (C) λ = 544 nm and θi = 25°. The black dotted lines represent the incident light, the blue lines represent the specular reflection, and the red and green lines represent the light transmitted in the x- and y-directions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

B S D F ( θ i , ϕ i , θ s , ϕ s ) = L s ( θ s , ϕ s ) E i ( θ i , ϕ i ) = Φ s / Ω s Φ i ( θ i , ϕ i ) cos θ s ( 1 S r )
θ i s i m = sin 1 ( 1 n U V C P sin θ i m e a s )
k sin ( θ i ) ± m 2 π Λ = β m = k n e f f
k x + k y ± i G y ± j G x = β i , j
λ i , j ( θ i , ϕ ) = λ θ = 0 ; i , j = 1 ( Λ λ i , j sin θ i sin ϕ ± i ) 2 + ( Λ λ i , j sin θ i cos ϕ ± j ) 2
sin θ m = m λ Λ + sin θ i

Metrics