Abstract

A holographic projection system with optical zoom is demonstrated. By using a combination of a LC lens and an encoded Fresnel lens on the LCoS panel, we can control zoom in a holographic projector. The magnification can be electrically adjusted by tuning the focal length of the combination of the two lenses. The zoom ratio of the holographic projection system can reach 3.7:1 with continuous zoom function. The optical zoom function can decrease the complexity of the holographic projection system.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Georgiou, J. Christmas, J. Moore, A. Jeziorska-Chapman, A. Davey, N. Collings, and W. A. Crossland, “Liquid crystal over silicon device characteristics for holographic projection of high-definition television images,” Appl. Opt.47(26), 4793–4803 (2008).
    [CrossRef] [PubMed]
  2. E. Buckley, “Holographic laser projection,” J. Disp. Technol.7(3), 135–140 (2011).
    [CrossRef]
  3. E. Buckley, “Holographic projector using one lens,” Opt. Lett.35(20), 3399–3401 (2010).
    [CrossRef] [PubMed]
  4. M. Makowski, I. Ducin, K. Kakarenko, A. Kolodziejczyk, A. Siemion, A. Siemion, J. Suszek, M. Sypek, and D. Wojnowski, “Efficient image projection by Fourier electroholography,” Opt. Lett.36(16), 3018–3020 (2011).
    [CrossRef] [PubMed]
  5. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express17(23), 20840–20846 (2009).
    [CrossRef] [PubMed]
  6. B. Marx, “Holographic optics - Miniature laser projector could open new markets,” Laser Focus World42, 40 (2006).
  7. T. Shimobaba, A. Gotchev, N. Masuda, and T. Ito, “Proposal of zoomable holographic projection without zoom lens,” in Proc. Int. Disp. Workshop, (Nagoya, Japan, 2011), PRJ3.
  8. M. Kawamura, M. Ye, and S. Sato, “Optical particle manipulation using an LC device with eight-divided circularly hole-patterned electrodes,” Opt. Express16(14), 10059–10065 (2008).
    [CrossRef] [PubMed]
  9. M. Nazarathy and J. Shamir, “Fourier optics described by operator algebra,” J. Opt. Soc. Am.70(2), 150–159 (1980).
    [CrossRef]
  10. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (New York: McGraw-Hill, 1996).
  11. A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A, Pure Appl. Opt.10(3), 035302 (2008).
    [CrossRef]
  12. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002).
    [CrossRef]
  13. Y. H. Lin, M. S. Chen, and H. C. Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express19(5), 4714–4721 (2011).
    [CrossRef] [PubMed]
  14. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
    [CrossRef]
  15. A. F. Naumov, G. D. Love, M. Y. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express4(9), 344–352 (1999).
    [CrossRef] [PubMed]
  16. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys.41(Part 2, No. 11A), L1232–L1233 (2002).
    [CrossRef]
  17. M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express16(6), 4302–4308 (2008).
    [CrossRef] [PubMed]
  18. H. C. Lin and Y. H. Lin, “An electrically tuning focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett.98(8), 083503 (2011).
    [CrossRef]
  19. H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012).
    [CrossRef] [PubMed]
  20. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons Ltd. 2012).

2012

2011

2010

2009

2008

2006

B. Marx, “Holographic optics - Miniature laser projector could open new markets,” Laser Focus World42, 40 (2006).

2002

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys.41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

1999

1980

Buckley, E.

E. Buckley, “Holographic laser projection,” J. Disp. Technol.7(3), 135–140 (2011).
[CrossRef]

E. Buckley, “Holographic projector using one lens,” Opt. Lett.35(20), 3399–3401 (2010).
[CrossRef] [PubMed]

Chen, M. S.

Christmas, J.

Collings, N.

Crossland, W. A.

Davey, A.

Ducin, I.

Fajst, A.

Georgiou, A.

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys.41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Jeziorska-Chapman, A.

Juptner, W. P. O.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

Kakarenko, K.

Kawamura, M.

Kolodziejczyk, A.

Lin, H. C.

Lin, Y. H.

Loktev, M. Y.

Love, G. D.

Makowski, M.

Marx, B.

B. Marx, “Holographic optics - Miniature laser projector could open new markets,” Laser Focus World42, 40 (2006).

Moore, J.

Naumov, A. F.

Nazarathy, M.

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys.41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Sato, S.

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express16(6), 4302–4308 (2008).
[CrossRef] [PubMed]

M. Kawamura, M. Ye, and S. Sato, “Optical particle manipulation using an LC device with eight-divided circularly hole-patterned electrodes,” Opt. Express16(14), 10059–10065 (2008).
[CrossRef] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys.41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

Shamir, J.

Siemion, A.

Suszek, J.

Sypek, M.

Vladimirov, F. L.

Wang, B.

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express16(6), 4302–4308 (2008).
[CrossRef] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys.41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Wojnowski, D.

Ye, M.

M. Kawamura, M. Ye, and S. Sato, “Optical particle manipulation using an LC device with eight-divided circularly hole-patterned electrodes,” Opt. Express16(14), 10059–10065 (2008).
[CrossRef] [PubMed]

M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express16(6), 4302–4308 (2008).
[CrossRef] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys.41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. C. Lin and Y. H. Lin, “An electrically tuning focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett.98(8), 083503 (2011).
[CrossRef]

J. Disp. Technol.

E. Buckley, “Holographic laser projection,” J. Disp. Technol.7(3), 135–140 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A, Pure Appl. Opt.10(3), 035302 (2008).
[CrossRef]

J. Opt. Soc. Am.

Jpn. J. Appl. Phys.

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys.41(Part 2, No. 11A), L1232–L1233 (2002).
[CrossRef]

Laser Focus World

B. Marx, “Holographic optics - Miniature laser projector could open new markets,” Laser Focus World42, 40 (2006).

Meas. Sci. Technol.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Other

T. Shimobaba, A. Gotchev, N. Masuda, and T. Ito, “Proposal of zoomable holographic projection without zoom lens,” in Proc. Int. Disp. Workshop, (Nagoya, Japan, 2011), PRJ3.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (New York: McGraw-Hill, 1996).

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons Ltd. 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The structure of the holographic projection system using a liquid crystal lens. (b) The schematic of effective optical system of (a) d1 is the effective radius of curvature of the incident light.

Fig. 2
Fig. 2

(a) The structure of the LC lens. (b) Measured voltage-dependent focal length of LC lens.

Fig. 3
Fig. 3

(a) The relation between the lens power of the encoded Fresnel lens and the LC lens. (b) The zoom ratio as the function of the lens power of LC lens.

Fig. 4
Fig. 4

The image of Bart Simpson produced by the holographic projector using a LC lens with a zoom ratio of (a) 3.7:1, (b) 2.1:1, (c) 1:1, and (d) 1.8:1. (e) The same image produced by the holographic projector using a solid lens with a focal length of 27 cm and 2 mm aperture. The zoom ratio is 1.8:1. The wavelength of the incident light is 532 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

f'=f(x,y)Q[ 1 f F ],
T=R[ d 3 ]Q[ 1 f LC ]R[ d 2 ]f'Q[ 1 d 1 ],
T=Q[ 1 d 3 f LC + ( f LC f LC d 3 ) 2 1 d 2 + d 3 f LC f LC d 3 ] V[ f LC f LC d 3 1 λ( d 2 + d 3 f LC f LC d 3 ) ] FfQ[ 1 d 2 + d 3 f LC f LC d 3 1 f F + 1 d 1 ].
f LC = d 1 d 3 f F + d 2 d 3 f F d 1 d 2 d 3 f F ( d 1 + d 2 + d 3 ) d 1 d 3 d 1 d 2 .
T=V[ f LC λ( d 2 f LC d 2 d 3 + d 3 f LC ) ]Ff.
U(ξ,η)= 1 M f(x,y)exp[j2π( ξ M x+ η M y)]dxdy ,
f F = d 1 d 2 d 3 d 1 d 2 f LC d 1 d 3 f LC d 1 d 3 + d 2 d 3 f LC ( d 1 + d 2 + d 3 ) .
T=V[ 1 d 2 f ' F λ d 3 ]Ff,
f ' LC = 1( d 2 + d 3 )f ' F d 3 d 2 d 3 f ' F .

Metrics