Abstract

We experimentally demonstrate tunable multiple-idler wavelength broadcasting of a signal to selective channels for wavelength division multiplexing (WDM). This is based on cascaded χ(2) nonlinear mixing process in a novel multiple-QPM 10-mm-long periodically poled LiNbO3 having an aperiodic domain in the center. The idlers’ spacing is varied utilizing detuning of the pump wavelength within the SHG bandwidth. The temperature-assisted tuning of QPM pump wavelengths allows shifting the idlers together to different set of WDM channels. Our experimental results indicate that an overall idler wavelength shift of less than 10 nm realized by selecting pump wavelengths via temperature tuning, is sufficient to cover up to 40 WDM channels for multiple idlers broadcasting.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett.35(16), 2672–2674 (2010).
    [CrossRef] [PubMed]
  2. M. Ahlawat, A. Tehranchi, C. Q. Xu, and R. Kashyap, “Ultrabroadband flattop wavelength conversion based on cascaded sum frequency generation and difference frequency generation using pump detuning in quasi-phase-matched lithium niobate waveguides,” Appl. Opt.50(25), E108–E111 (2011).
    [CrossRef]
  3. B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).
  4. J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).
    [CrossRef]
  5. W. Sohler, D. Buchter, L. Gui, H. Herrmann, H. Hu, R. Ludwig, R. Nouroozi, V. Quiring, R. Ricken, C. Schubert, and H. Suche, “Wavelength conversion and optical signal processing in PPLN waveguides,” in Communications and Photonics Conference and Exhibition (ACP), 2009 Asia, (2009), 1–2.
  6. F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).
    [CrossRef]
  7. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol.24(7), 2579–2592 (2006).
    [CrossRef]
  8. J. Wang and J. Sun, “40Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” in (SPIE, 2006), 634407–634407.
  9. C. Q. Xu and B. Chen, “Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation,” Opt. Lett.29(3), 292–294 (2004).
    [CrossRef] [PubMed]
  10. A. Tehranchi and R. Kashyap, “Improved cascaded sum and difference frequency generation-based wavelength converters in low-loss quasi-phase-matched lithium niobate waveguides,” Appl. Opt.48(31), G143–G147 (2009).
    [CrossRef] [PubMed]
  11. A. Tehranchi, R. Morandotti, and R. Kashyap, “Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings,” Opt. Express19(23), 22528–22534 (2011).
    [CrossRef] [PubMed]
  12. J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express16(10), 6957–6962 (2008).
    [CrossRef] [PubMed]
  13. M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).
    [CrossRef]
  14. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999).
    [CrossRef] [PubMed]
  15. O. F. Yilmaz, S. R. Nuccio, S. Khaleghi, J. Y. Yang, L. Christen, and A. E. Willner, “Optical multiplexing of two 21.5 Gb/s DPSK signals into a single 43 Gb/s DQPSK channel with simultaneous 7-fold multicasting in a single PPLN waveguide,” in Optical Fiber Communication - incudes post deadline papers, (2009), 1–3.
  16. M. Ahlawat, A. Tehranchi, K. Pandiyan, M. Cha, and R. Kashyap, “Tunable wavelength broadcasting in a PPLN with multiple QPM peaks,” in Nonlinear Photonics, (2012), JTu5A.37.
  17. K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express17(20), 17862–17867 (2009).
    [CrossRef] [PubMed]
  18. S. K. Pandiyan, Fabrication of periodically poled Lithium Niobate crystals for quasi-phase matching nonlinear optics and quality evaluation by diffraction, (Pusan National University, Busan, 2010).
  19. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997).
    [CrossRef] [PubMed]
  20. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).
    [CrossRef]
  21. W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, 2003).
  22. K. J. Lee, S. Liu, K. Gallo, P. Petropoulos, and D. J. Richardson, “Analysis of acceptable spectral windows of quadratic cascaded nonlinear processes in a periodically poled lithium niobate waveguide,” Opt. Express19(9), 8327–8335 (2011).
    [CrossRef] [PubMed]

2011

2010

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).
[CrossRef]

M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett.35(16), 2672–2674 (2010).
[CrossRef] [PubMed]

2009

2008

2007

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).
[CrossRef]

2006

2004

2001

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

1999

1997

1968

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).
[CrossRef]

Ahlawat, M.

Asobe, M.

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).
[CrossRef]

Brener, I.

Cha, M.

Chen, B.

C. Q. Xu and B. Chen, “Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation,” Opt. Lett.29(3), 292–294 (2004).
[CrossRef] [PubMed]

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

Chen, X.

Chen, Y.

Chou, M. H.

Fejer, M. M.

Gallo, K.

Gong, M.

Gu, W.

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).
[CrossRef]

Harada, A.

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

Ishii, H.

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).
[CrossRef]

Jundt, D. H.

Kang, Y. S.

Kashyap, R.

Kim, B. J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).
[CrossRef]

Kumar, S.

Langrock, C.

Lee, K. J.

Lim, H. H.

Liu, S.

Lu, F.

Lu, W.

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).
[CrossRef]

Magari, K.

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).
[CrossRef]

McGeehan, J. E.

Morandotti, R.

Nihei, Y.

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

Pandiyan, K.

Parameswaran, K. R.

Petropoulos, P.

Richardson, D. J.

Shen, J.

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).
[CrossRef]

Tadanaga, O.

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).
[CrossRef]

Tehranchi, A.

Umeki, T.

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).
[CrossRef]

Willner, A. E.

Xia, Y.

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).
[CrossRef]

Xu, C. Q.

Xu, C.-Q.

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

Yanagawa, T.

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).
[CrossRef]

Yao, J. Q.

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).
[CrossRef]

Yu, S.

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).
[CrossRef]

Zhang, J.

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express16(10), 6957–6962 (2008).
[CrossRef] [PubMed]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).
[CrossRef]

Zhou, B.

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

Appl. Opt.

Electron. Lett.

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).
[CrossRef]

IEEE J. Quantum Electron.

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).
[CrossRef]

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

Opt. Express

Opt. Lett.

Other

J. Wang and J. Sun, “40Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” in (SPIE, 2006), 634407–634407.

W. Sohler, D. Buchter, L. Gui, H. Herrmann, H. Hu, R. Ludwig, R. Nouroozi, V. Quiring, R. Ricken, C. Schubert, and H. Suche, “Wavelength conversion and optical signal processing in PPLN waveguides,” in Communications and Photonics Conference and Exhibition (ACP), 2009 Asia, (2009), 1–2.

O. F. Yilmaz, S. R. Nuccio, S. Khaleghi, J. Y. Yang, L. Christen, and A. E. Willner, “Optical multiplexing of two 21.5 Gb/s DPSK signals into a single 43 Gb/s DQPSK channel with simultaneous 7-fold multicasting in a single PPLN waveguide,” in Optical Fiber Communication - incudes post deadline papers, (2009), 1–3.

M. Ahlawat, A. Tehranchi, K. Pandiyan, M. Cha, and R. Kashyap, “Tunable wavelength broadcasting in a PPLN with multiple QPM peaks,” in Nonlinear Photonics, (2012), JTu5A.37.

S. K. Pandiyan, Fabrication of periodically poled Lithium Niobate crystals for quasi-phase matching nonlinear optics and quality evaluation by diffraction, (Pusan National University, Busan, 2010).

W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for cSFG/DFG with two pumps and a signal, PC: Polarization Controller, OSA: Optical Spectrum Analyzer. For SFG, just the two pump wavelengths are coupled into the setup. PPLN with a central aperiodic domain having width equal to size of the device period is shown.

Fig. 2
Fig. 2

(a) SH power vs. pump wavelength, theoretical (solid black) and experimentally observed (dotted, red) plots for the 2-peak QPM structure shown. (b) Spectra of multiple SHG-SFG for the different cases of 2 SH and 1 SF output (blue dashed); 1SH and 1SF (dash-dotted red curve); 1SH peak (green solid trace)

Fig. 3
Fig. 3

(a) Spectrum of multiple SHG-SFG showing equalized peak powers achieved by pump detuning, mutual spacing of the peaks is 0.55 nm. (b) Spectra of three SH-SF peaks showing 0.6 nm peak-wavelength shift over a 3°C temperature difference when the two pump wavelengths were simultaneously shifted from 1537.3 nm and 1538.5 nm to 1538.5 nm and 1539.7 nm.

Fig. 4
Fig. 4

(a) Scheme for tunable broadcasting of a signal into three idlers by detuning of the pump wavelengths (b) Spectral variation of idler spacing with detuning of both pump wavelengths.

Fig. 5
Fig. 5

(a) Scheme for tunable broadcasting of a signal into three idlers by detuning of pump wavelength. (b) Spectral variation of idler spacing with pump wavelengths separation by tuning just one pump wavelength.

Fig. 6
Fig. 6

(a) Scheme for tunable broadcasting of a signal into three idlers by temperature-assisted pump-wavelength tuning. (b) Tunable triple-idler broadcasting of a signal at 1545.27 nm with shifting the two-pump wavelengths at 1536.95 nm and 1538.15 nm by + 1.6 nm, + 3 nm and + 4.4 nm and simultaneous temperature tuning from 78.2°C by + 4.8°C, + 8.3°C and + 10.8°C.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

κ(x)= d eff sin( 2πx Λ )[ rect( xl/4 l/2 )rect( x3l/4 l/2 ) ]
A 2 (q)=i A 1 2 l d eff e iπl( q± 1 Λ ) si n 2 ( π 2 l( q± 1 Λ ) ) π 2 l( q± 1 Λ )
n SF ω SF /c n 1 ω p1 /c n 2 ω p2 /c=2π/Λ,
n SF ω SF /c n s ω s /c n c ω c /c=2π/Λ,

Metrics