K. J. Lee, S. Liu, K. Gallo, P. Petropoulos, and D. J. Richardson, “Analysis of acceptable spectral windows of quadratic cascaded nonlinear processes in a periodically poled lithium niobate waveguide,” Opt. Express19(9), 8327–8335 (2011).

[CrossRef]
[PubMed]

M. Ahlawat, A. Tehranchi, C. Q. Xu, and R. Kashyap, “Ultrabroadband flattop wavelength conversion based on cascaded sum frequency generation and difference frequency generation using pump detuning in quasi-phase-matched lithium niobate waveguides,” Appl. Opt.50(25), E108–E111 (2011).

[CrossRef]

A. Tehranchi, R. Morandotti, and R. Kashyap, “Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings,” Opt. Express19(23), 22528–22534 (2011).

[CrossRef]
[PubMed]

M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett.35(16), 2672–2674 (2010).

[CrossRef]
[PubMed]

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).

[CrossRef]

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).

[CrossRef]

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express17(20), 17862–17867 (2009).

[CrossRef]
[PubMed]

A. Tehranchi and R. Kashyap, “Improved cascaded sum and difference frequency generation-based wavelength converters in low-loss quasi-phase-matched lithium niobate waveguides,” Appl. Opt.48(31), G143–G147 (2009).

[CrossRef]
[PubMed]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).

[CrossRef]

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).

[CrossRef]

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).

[CrossRef]

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).

[CrossRef]

C. Q. Xu and B. Chen, “Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation,” Opt. Lett.29(3), 292–294 (2004).

[CrossRef]
[PubMed]

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett.35(16), 2672–2674 (2010).

[CrossRef]
[PubMed]

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express16(10), 6957–6962 (2008).

[CrossRef]
[PubMed]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).

[CrossRef]

M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett.35(16), 2672–2674 (2010).

[CrossRef]
[PubMed]

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express16(10), 6957–6962 (2008).

[CrossRef]
[PubMed]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).

[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol.24(7), 2579–2592 (2006).

[CrossRef]

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999).

[CrossRef]
[PubMed]

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).

[CrossRef]

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).

[CrossRef]

M. Ahlawat, A. Tehranchi, C. Q. Xu, and R. Kashyap, “Ultrabroadband flattop wavelength conversion based on cascaded sum frequency generation and difference frequency generation using pump detuning in quasi-phase-matched lithium niobate waveguides,” Appl. Opt.50(25), E108–E111 (2011).

[CrossRef]

A. Tehranchi, R. Morandotti, and R. Kashyap, “Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings,” Opt. Express19(23), 22528–22534 (2011).

[CrossRef]
[PubMed]

A. Tehranchi and R. Kashyap, “Improved cascaded sum and difference frequency generation-based wavelength converters in low-loss quasi-phase-matched lithium niobate waveguides,” Appl. Opt.48(31), G143–G147 (2009).

[CrossRef]
[PubMed]

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).

[CrossRef]

M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett.35(16), 2672–2674 (2010).

[CrossRef]
[PubMed]

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express16(10), 6957–6962 (2008).

[CrossRef]
[PubMed]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).

[CrossRef]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).

[CrossRef]

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).

[CrossRef]

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).

[CrossRef]

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).

[CrossRef]

M. Ahlawat, A. Tehranchi, C. Q. Xu, and R. Kashyap, “Ultrabroadband flattop wavelength conversion based on cascaded sum frequency generation and difference frequency generation using pump detuning in quasi-phase-matched lithium niobate waveguides,” Appl. Opt.50(25), E108–E111 (2011).

[CrossRef]

A. Tehranchi, R. Morandotti, and R. Kashyap, “Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings,” Opt. Express19(23), 22528–22534 (2011).

[CrossRef]
[PubMed]

A. Tehranchi and R. Kashyap, “Improved cascaded sum and difference frequency generation-based wavelength converters in low-loss quasi-phase-matched lithium niobate waveguides,” Appl. Opt.48(31), G143–G147 (2009).

[CrossRef]
[PubMed]

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).

[CrossRef]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).

[CrossRef]

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).

[CrossRef]

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).

[CrossRef]

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).

[CrossRef]

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express16(10), 6957–6962 (2008).

[CrossRef]
[PubMed]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).

[CrossRef]

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett.43(25), 1446–1447 (2007).

[CrossRef]

J. Shen, S. Yu, W. Gu, and J. Q. Yao, “Optimum design for 160-Gb/s all-optical time-domain demultiplexing based on cascaded second-order nonlinearities of SHG and DFG,” IEEE J. Quantum Electron.45(6), 694–699 (2009).

[CrossRef]

M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, K. Magari, and H. Ishii, “Engineered quasi-phase matching device for unequally spaced multiple wavelength generation and its application to midinfrared gas sensing,” IEEE J. Quantum Electron.46(4), 447–453 (2010).

[CrossRef]

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys.39(8), 3597–3639 (1968).

[CrossRef]

B. Chen, C.-Q. Xu, B. Zhou, Y. Nihei, and A. Harada, “All-optical variable-in variable-out wavelength conversions by using MgO:LiNbO3 quasiphase matched wavelength converters,” Jpn. J. Appl. Phys.40, 3 (2001).

K. J. Lee, S. Liu, K. Gallo, P. Petropoulos, and D. J. Richardson, “Analysis of acceptable spectral windows of quadratic cascaded nonlinear processes in a periodically poled lithium niobate waveguide,” Opt. Express19(9), 8327–8335 (2011).

[CrossRef]
[PubMed]

A. Tehranchi, R. Morandotti, and R. Kashyap, “Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings,” Opt. Express19(23), 22528–22534 (2011).

[CrossRef]
[PubMed]

J. Zhang, Y. Chen, F. Lu, and X. Chen, “Flexible wavelength conversion via cascaded second order nonlinearity using broadband SHG in MgO-doped PPLN,” Opt. Express16(10), 6957–6962 (2008).

[CrossRef]
[PubMed]

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express17(20), 17862–17867 (2009).

[CrossRef]
[PubMed]

M. Gong, Y. Chen, F. Lu, and X. Chen, “All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN,” Opt. Lett.35(16), 2672–2674 (2010).

[CrossRef]
[PubMed]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997).

[CrossRef]
[PubMed]

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999).

[CrossRef]
[PubMed]

C. Q. Xu and B. Chen, “Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation,” Opt. Lett.29(3), 292–294 (2004).

[CrossRef]
[PubMed]

W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, 2003).

O. F. Yilmaz, S. R. Nuccio, S. Khaleghi, J. Y. Yang, L. Christen, and A. E. Willner, “Optical multiplexing of two 21.5 Gb/s DPSK signals into a single 43 Gb/s DQPSK channel with simultaneous 7-fold multicasting in a single PPLN waveguide,” in Optical Fiber Communication - incudes post deadline papers, (2009), 1–3.

M. Ahlawat, A. Tehranchi, K. Pandiyan, M. Cha, and R. Kashyap, “Tunable wavelength broadcasting in a PPLN with multiple QPM peaks,” in Nonlinear Photonics, (2012), JTu5A.37.

S. K. Pandiyan, Fabrication of periodically poled Lithium Niobate crystals for quasi-phase matching nonlinear optics and quality evaluation by diffraction, (Pusan National University, Busan, 2010).

W. Sohler, D. Buchter, L. Gui, H. Herrmann, H. Hu, R. Ludwig, R. Nouroozi, V. Quiring, R. Ricken, C. Schubert, and H. Suche, “Wavelength conversion and optical signal processing in PPLN waveguides,” in Communications and Photonics Conference and Exhibition (ACP), 2009 Asia, (2009), 1–2.

J. Wang and J. Sun, “40Gbit/s all-optical tunable format conversion in LiNbO3 waveguides based on cascaded SHG/DFG interactions,” in (SPIE, 2006), 634407–634407.