Abstract

We numerically investigate relative intensity-noise transfer from a noisy pump to the generated Stokes component in random distributed feedback ultralong Raman fiber lasers. Results show transfer levels comparable to those in distributed Raman amplification and cavity-based ultralong Raman fiber lasers, but with some unique spectral features.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4, 231–235 (2010), http://www.nature.com/nphoton/journal/v4/n4/abs/nphoton.2010.4.html .
    [CrossRef]
  2. J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical Media,” Phys. Rev. Lett.96, 023902 (2006), http://prl.aps.org/abstract/PRL/v96/i2/e023902 .
    [CrossRef] [PubMed]
  3. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castañón, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36, 130–132 (2011), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-2-130 .
    [CrossRef] [PubMed]
  4. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-35-7-1100 .
    [CrossRef] [PubMed]
  5. H. Martins, M. B. Marques, and O. Frazão, “300 km-ultralong Raman fiber lasers using a distributed mirror for sensing applications,” Phys. Rev. Lett.19, 18149–18154 (2011), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-19-19-18149 .
  6. C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” J. Light-wave Technol.19, 8, 1140–1148 (2001), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=939794 .
    [CrossRef]
  7. B. Bristiel, S. Jiang, P. Gallion, and E. Pincemin, “New model of noise figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett.18(8), 980–982 (2006), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1613990 .
    [CrossRef]
  8. M. Alcon-Camas and J. D. Ania-Castañón, “RIN transfer in 2nd-order distributed amplification with ultralong fiber lasers,” Opt. Express18(23), 23569–23575 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-23-23569 .
    [CrossRef] [PubMed]
  9. M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun.260(2), 656–661 (2006), http://dx.org/10.1016/j.optcom.2005.10.077 .
    [CrossRef]
  10. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañń, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010), http://pra.aps.org/abstract/PRA/v82/i3/e033828 .
    [CrossRef]
  11. V. Karalekas, J. D. Ania-Castañń, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express15, 16690–16695 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16690 .
    [CrossRef] [PubMed]

Other

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4, 231–235 (2010), http://www.nature.com/nphoton/journal/v4/n4/abs/nphoton.2010.4.html .
[CrossRef]

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical Media,” Phys. Rev. Lett.96, 023902 (2006), http://prl.aps.org/abstract/PRL/v96/i2/e023902 .
[CrossRef] [PubMed]

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castañón, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36, 130–132 (2011), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-36-2-130 .
[CrossRef] [PubMed]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-35-7-1100 .
[CrossRef] [PubMed]

H. Martins, M. B. Marques, and O. Frazão, “300 km-ultralong Raman fiber lasers using a distributed mirror for sensing applications,” Phys. Rev. Lett.19, 18149–18154 (2011), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-19-19-18149 .

C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” J. Light-wave Technol.19, 8, 1140–1148 (2001), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=939794 .
[CrossRef]

B. Bristiel, S. Jiang, P. Gallion, and E. Pincemin, “New model of noise figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett.18(8), 980–982 (2006), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1613990 .
[CrossRef]

M. Alcon-Camas and J. D. Ania-Castañón, “RIN transfer in 2nd-order distributed amplification with ultralong fiber lasers,” Opt. Express18(23), 23569–23575 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-23-23569 .
[CrossRef] [PubMed]

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun.260(2), 656–661 (2006), http://dx.org/10.1016/j.optcom.2005.10.077 .
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañń, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010), http://pra.aps.org/abstract/PRA/v82/i3/e033828 .
[CrossRef]

V. Karalekas, J. D. Ania-Castañń, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express15, 16690–16695 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16690 .
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic for a centrally-pumped RDF-RFL.

Fig. 2
Fig. 2

Evolution of the RIN transfer versus frequency along the fiber length for the situation where the amplification is mainly counter-propagated (top) or co-propagated (bottom). The total pump power is 3 W and the total length is 100 Km.

Fig. 3
Fig. 3

Variation of the RIN transfer vs. frequency with the total pump power (top) and the total length (bottom). In the first case, the total length is 100 Km and, in the second case, the total pump power is 3W.

Fig. 4
Fig. 4

Comparative between the RIN transfer for the RDF-RFL configuration and the traditional RFL in a logarithmic scale (left side) and a linear scale (right side).

Tables (1)

Tables Icon

Table 1 Main parameters in the simulation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d P p ± d z = α p P p ± υ p υ s g ( P s + + P s + 4 h υ s Δ υ s ( 1 + 1 e h ( υ p υ s ) / K B T 1 ) ) P p ± ± ε p P p
d P s ± d z = α s P s ± ± g ( P s ± + 2 h υ s Δ υ s ( 1 + 1 e h ( υ p υ s ) / K B T 1 ) ) ( P p + + P p ) ± ε s n s
d n p ± d z + i d p ± ω n p ± = α p n p ± υ p υ s g ( n s + + n s ) P p ± υ p υ s g ( P s + + P s ) n p ± ± ε p n p
d n s ± d z + i d s ± ω n s ± = α s n s ± ± g ( n p + + n p ) P s ± ± g ( P p + + P p ) n s ± ± ε s n s
H RIN ( x ) = | n s ( x ) N in |
P p + ( 0 ) = P in + η × P p ( 0 ) ; P s + ( 0 ) = η × P s ( 0 ) ; n p + ( 0 ) = N in + η × n p ( 0 ) ; n s + ( 0 ) = η × n s ( 0 ) .

Metrics