Abstract

In a recent study, the theory of pulse generation with fiber optical parametric amplification using sinusoidal (clock) intensity modulated pump was revisited [1]. This work showed that the pulses generated through such parametric interaction exhibit a shape which depends on the signal detuning with respect to the pump position (i.e. linear phase mismatch). A near Gaussian shape can only be achieved over a small region of the gain spectrum, close to the maximum gain location. Towards the extremities of the gain spectrum, the generated pulses take a near Sinc shape which can have many potential applications such as for all-optical Nyquist limited transmitters and/or receivers. In this paper we experimentally verify the theory at repetition rates up to 40 GHz. We also discuss the impact of noise, pump saturation and walk-off on the generated pulses.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vedadi, A. Ariaei, M. M. Jadidi, and J. A. Salehi, “Theoretical study of high repetition rate short pulse generation with fiber optical parametric amplification,” J. Lightwave Technol.30, 1263–1268 (2012).
    [CrossRef]
  2. H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenlowe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express19, 343–349 (2011).
    [CrossRef]
  3. J. Li, J. Hansryd, P. Hedekvist, P. Andrekson, and S. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett.13, 987–989 (2001).
    [CrossRef]
  4. A. Otani, Y. Tsuda, K. Igawa, and K. Shida, “Novel optical sampling oscilloscope using envelope detection triggering method,” J. Lightwave Technol.26, 2991–2998 (2008).
    [CrossRef]
  5. M. Jamshidifar, A. Vedadi, D. S. Govan, and M. E. Marhic, “Continuous-wave parametric amplification in bismuth-oxide fibers,” Opt. Fiber Technol.16, 458–466 (2010).
    [CrossRef]
  6. B.-P. Kuo, A. Wiberg, C.-S. Brés, N. Alic, and S. Radic, “Ultrafast clock recovery and sampling by single parametric device,” IEEE Photon. Technol. Lett.23, 191–193 (2011).
    [CrossRef]
  7. J. Hansryd and P. Andrekson, “Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” IEE Electron. Lett.37, 584–585 (2001).
    [CrossRef]
  8. T. Torounidis, M. Karlsson, and P. A. Andrekson, “Fiber optical parametric amplifier pulse source: Theory and experiments,” J. Lightwave Technol.23, 4067–4073 (2005).
    [CrossRef]
  9. T. Torounidis, M. Westlund, H. Sunnerud, B.-E. Olsson, and P. Andrekson, “Signal generation and transmission at 40, 80, and 160 Gb/s using a fiber-optical parametric pulse source,” IEEE Photon. Technol. Lett.17, 312–314 (2005).
    [CrossRef]
  10. G.-W. Lu, K. Abedin, T. Miyazaki, and M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett.45, 221–222 (2009).
    [CrossRef]
  11. A. A. Vedadi and C.-S. Bres, “Experimental investigation of fiber optical parametric amplifier pulse generators,” in “Nonlinear Photonics,” (Optical Society of America, 2012), p. JM5A.8.
  12. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express15, 8104–8114 (2007).
    [CrossRef] [PubMed]
  13. E. Lichtman, A. A. Friesem, R. G. Waarts, and H. H. Yaffe, “Exact solution of four-wave mixing of copropagating light beams in a kerr medium,” J. Opt. Soc. Am. B4, 1801–1805 (1987).
    [CrossRef]
  14. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge, 2007).
    [CrossRef]
  15. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express13, 6234–6249 (2005).
    [CrossRef] [PubMed]
  16. N. Nasser, G. Fanjoux, E. Lantz, and T. Sylvestre, “Tunable optical delay using parametric amplification in highly birefringent optical fibers,” J. Opt. Soc. Am. B28, 2352–2357 (2011).
    [CrossRef]
  17. A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, and M. Taki, “Impact of the third-order dispersion on the modulation instability gain of pulsed signals,” Opt. Lett.35, 1194–1196 (2010).
    [CrossRef] [PubMed]
  18. A. Vedadi, M. A. Shoaie, and C.-S. Brés, “Near nyquist sinc optical pulse generation with fiber optical parametric ampification,” in “European Conf. on Optical Comm. 2012,” (2012), P1.10.
  19. A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17, 1178–1180 (2005).
    [CrossRef]
  20. A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simmoneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber parametric amplifier,” IEEE Photon. Technol. Lett.16, 1289–1291 (2004).
    [CrossRef]

2012

A. Vedadi, A. Ariaei, M. M. Jadidi, and J. A. Salehi, “Theoretical study of high repetition rate short pulse generation with fiber optical parametric amplification,” J. Lightwave Technol.30, 1263–1268 (2012).
[CrossRef]

A. Vedadi, M. A. Shoaie, and C.-S. Brés, “Near nyquist sinc optical pulse generation with fiber optical parametric ampification,” in “European Conf. on Optical Comm. 2012,” (2012), P1.10.

2011

N. Nasser, G. Fanjoux, E. Lantz, and T. Sylvestre, “Tunable optical delay using parametric amplification in highly birefringent optical fibers,” J. Opt. Soc. Am. B28, 2352–2357 (2011).
[CrossRef]

H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenlowe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express19, 343–349 (2011).
[CrossRef]

B.-P. Kuo, A. Wiberg, C.-S. Brés, N. Alic, and S. Radic, “Ultrafast clock recovery and sampling by single parametric device,” IEEE Photon. Technol. Lett.23, 191–193 (2011).
[CrossRef]

2010

M. Jamshidifar, A. Vedadi, D. S. Govan, and M. E. Marhic, “Continuous-wave parametric amplification in bismuth-oxide fibers,” Opt. Fiber Technol.16, 458–466 (2010).
[CrossRef]

A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, and M. Taki, “Impact of the third-order dispersion on the modulation instability gain of pulsed signals,” Opt. Lett.35, 1194–1196 (2010).
[CrossRef] [PubMed]

2009

G.-W. Lu, K. Abedin, T. Miyazaki, and M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett.45, 221–222 (2009).
[CrossRef]

2008

2007

2005

A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17, 1178–1180 (2005).
[CrossRef]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express13, 6234–6249 (2005).
[CrossRef] [PubMed]

T. Torounidis, M. Karlsson, and P. A. Andrekson, “Fiber optical parametric amplifier pulse source: Theory and experiments,” J. Lightwave Technol.23, 4067–4073 (2005).
[CrossRef]

T. Torounidis, M. Westlund, H. Sunnerud, B.-E. Olsson, and P. Andrekson, “Signal generation and transmission at 40, 80, and 160 Gb/s using a fiber-optical parametric pulse source,” IEEE Photon. Technol. Lett.17, 312–314 (2005).
[CrossRef]

2004

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simmoneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber parametric amplifier,” IEEE Photon. Technol. Lett.16, 1289–1291 (2004).
[CrossRef]

2001

J. Hansryd and P. Andrekson, “Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” IEE Electron. Lett.37, 584–585 (2001).
[CrossRef]

J. Li, J. Hansryd, P. Hedekvist, P. Andrekson, and S. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett.13, 987–989 (2001).
[CrossRef]

1987

Abedin, K.

G.-W. Lu, K. Abedin, T. Miyazaki, and M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett.45, 221–222 (2009).
[CrossRef]

Alic, N.

B.-P. Kuo, A. Wiberg, C.-S. Brés, N. Alic, and S. Radic, “Ultrafast clock recovery and sampling by single parametric device,” IEEE Photon. Technol. Lett.23, 191–193 (2011).
[CrossRef]

Andrekson, P.

T. Torounidis, M. Westlund, H. Sunnerud, B.-E. Olsson, and P. Andrekson, “Signal generation and transmission at 40, 80, and 160 Gb/s using a fiber-optical parametric pulse source,” IEEE Photon. Technol. Lett.17, 312–314 (2005).
[CrossRef]

J. Hansryd and P. Andrekson, “Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” IEE Electron. Lett.37, 584–585 (2001).
[CrossRef]

J. Li, J. Hansryd, P. Hedekvist, P. Andrekson, and S. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett.13, 987–989 (2001).
[CrossRef]

Andrekson, P. A.

Ariaei, A.

Bayart, D.

A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17, 1178–1180 (2005).
[CrossRef]

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simmoneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber parametric amplifier,” IEEE Photon. Technol. Lett.16, 1289–1291 (2004).
[CrossRef]

Bres, C.-S.

A. A. Vedadi and C.-S. Bres, “Experimental investigation of fiber optical parametric amplifier pulse generators,” in “Nonlinear Photonics,” (Optical Society of America, 2012), p. JM5A.8.

Brés, C.-S.

A. Vedadi, M. A. Shoaie, and C.-S. Brés, “Near nyquist sinc optical pulse generation with fiber optical parametric ampification,” in “European Conf. on Optical Comm. 2012,” (2012), P1.10.

B.-P. Kuo, A. Wiberg, C.-S. Brés, N. Alic, and S. Radic, “Ultrafast clock recovery and sampling by single parametric device,” IEEE Photon. Technol. Lett.23, 191–193 (2011).
[CrossRef]

Clausen, A.

H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenlowe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express19, 343–349 (2011).
[CrossRef]

Coen, S.

Dahan, D.

Durécu-Legrand, A.

A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17, 1178–1180 (2005).
[CrossRef]

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simmoneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber parametric amplifier,” IEEE Photon. Technol. Lett.16, 1289–1291 (2004).
[CrossRef]

Eisenstein, G.

Fanjoux, G.

Friesem, A. A.

Galili, M.

H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenlowe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express19, 343–349 (2011).
[CrossRef]

Govan, D. S.

M. Jamshidifar, A. Vedadi, D. S. Govan, and M. E. Marhic, “Continuous-wave parametric amplification in bismuth-oxide fibers,” Opt. Fiber Technol.16, 458–466 (2010).
[CrossRef]

Hansryd, J.

J. Hansryd and P. Andrekson, “Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” IEE Electron. Lett.37, 584–585 (2001).
[CrossRef]

J. Li, J. Hansryd, P. Hedekvist, P. Andrekson, and S. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett.13, 987–989 (2001).
[CrossRef]

Harvey, J. D.

Hedekvist, P.

J. Li, J. Hansryd, P. Hedekvist, P. Andrekson, and S. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett.13, 987–989 (2001).
[CrossRef]

Hsieh, A. S. Y.

Hu, H.

H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenlowe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express19, 343–349 (2011).
[CrossRef]

Igawa, K.

Jadidi, M. M.

Jamshidifar, M.

M. Jamshidifar, A. Vedadi, D. S. Govan, and M. E. Marhic, “Continuous-wave parametric amplification in bismuth-oxide fibers,” Opt. Fiber Technol.16, 458–466 (2010).
[CrossRef]

Jeppesen, P.

H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenlowe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express19, 343–349 (2011).
[CrossRef]

Karlsson, M.

Knudsen, S.

J. Li, J. Hansryd, P. Hedekvist, P. Andrekson, and S. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett.13, 987–989 (2001).
[CrossRef]

Kolobov, M.

Kudlinski, A.

Kuo, B.-P.

B.-P. Kuo, A. Wiberg, C.-S. Brés, N. Alic, and S. Radic, “Ultrafast clock recovery and sampling by single parametric device,” IEEE Photon. Technol. Lett.23, 191–193 (2011).
[CrossRef]

Lantz, E.

N. Nasser, G. Fanjoux, E. Lantz, and T. Sylvestre, “Tunable optical delay using parametric amplification in highly birefringent optical fibers,” J. Opt. Soc. Am. B28, 2352–2357 (2011).
[CrossRef]

A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17, 1178–1180 (2005).
[CrossRef]

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simmoneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber parametric amplifier,” IEEE Photon. Technol. Lett.16, 1289–1291 (2004).
[CrossRef]

Leonhardt, R.

Li, J.

J. Li, J. Hansryd, P. Hedekvist, P. Andrekson, and S. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett.13, 987–989 (2001).
[CrossRef]

Lichtman, E.

Louvergneaux, E.

Lu, G.-W.

G.-W. Lu, K. Abedin, T. Miyazaki, and M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett.45, 221–222 (2009).
[CrossRef]

Maillotte, H.

A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17, 1178–1180 (2005).
[CrossRef]

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simmoneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber parametric amplifier,” IEEE Photon. Technol. Lett.16, 1289–1291 (2004).
[CrossRef]

Marhic,

Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge, 2007).
[CrossRef]

Marhic, M.

G.-W. Lu, K. Abedin, T. Miyazaki, and M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett.45, 221–222 (2009).
[CrossRef]

Marhic, M. E.

M. Jamshidifar, A. Vedadi, D. S. Govan, and M. E. Marhic, “Continuous-wave parametric amplification in bismuth-oxide fibers,” Opt. Fiber Technol.16, 458–466 (2010).
[CrossRef]

Miyazaki, T.

G.-W. Lu, K. Abedin, T. Miyazaki, and M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett.45, 221–222 (2009).
[CrossRef]

Mulvad, H. C. H.

H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenlowe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express19, 343–349 (2011).
[CrossRef]

Murdoch, S. G.

Mussot, A.

A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, and M. Taki, “Impact of the third-order dispersion on the modulation instability gain of pulsed signals,” Opt. Lett.35, 1194–1196 (2010).
[CrossRef] [PubMed]

A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17, 1178–1180 (2005).
[CrossRef]

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simmoneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber parametric amplifier,” IEEE Photon. Technol. Lett.16, 1289–1291 (2004).
[CrossRef]

Nasser, N.

Olsson, B.-E.

T. Torounidis, M. Westlund, H. Sunnerud, B.-E. Olsson, and P. Andrekson, “Signal generation and transmission at 40, 80, and 160 Gb/s using a fiber-optical parametric pulse source,” IEEE Photon. Technol. Lett.17, 312–314 (2005).
[CrossRef]

Otani, A.

Oxenlowe, L. K.

H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenlowe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express19, 343–349 (2011).
[CrossRef]

Peucheret, C.

H. Hu, H. C. H. Mulvad, C. Peucheret, M. Galili, A. Clausen, P. Jeppesen, and L. K. Oxenlowe, “10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation,” Opt. Express19, 343–349 (2011).
[CrossRef]

Radic, S.

B.-P. Kuo, A. Wiberg, C.-S. Brés, N. Alic, and S. Radic, “Ultrafast clock recovery and sampling by single parametric device,” IEEE Photon. Technol. Lett.23, 191–193 (2011).
[CrossRef]

Salehi, J. A.

Shida, K.

Shoaie, M. A.

A. Vedadi, M. A. Shoaie, and C.-S. Brés, “Near nyquist sinc optical pulse generation with fiber optical parametric ampification,” in “European Conf. on Optical Comm. 2012,” (2012), P1.10.

Simmoneau, C.

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simmoneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber parametric amplifier,” IEEE Photon. Technol. Lett.16, 1289–1291 (2004).
[CrossRef]

Simonneau, C.

A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17, 1178–1180 (2005).
[CrossRef]

Sunnerud, H.

T. Torounidis, M. Westlund, H. Sunnerud, B.-E. Olsson, and P. Andrekson, “Signal generation and transmission at 40, 80, and 160 Gb/s using a fiber-optical parametric pulse source,” IEEE Photon. Technol. Lett.17, 312–314 (2005).
[CrossRef]

Sylvestre, T.

N. Nasser, G. Fanjoux, E. Lantz, and T. Sylvestre, “Tunable optical delay using parametric amplification in highly birefringent optical fibers,” J. Opt. Soc. Am. B28, 2352–2357 (2011).
[CrossRef]

A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17, 1178–1180 (2005).
[CrossRef]

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simmoneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber parametric amplifier,” IEEE Photon. Technol. Lett.16, 1289–1291 (2004).
[CrossRef]

Taki, M.

Torounidis, T.

T. Torounidis, M. Karlsson, and P. A. Andrekson, “Fiber optical parametric amplifier pulse source: Theory and experiments,” J. Lightwave Technol.23, 4067–4073 (2005).
[CrossRef]

T. Torounidis, M. Westlund, H. Sunnerud, B.-E. Olsson, and P. Andrekson, “Signal generation and transmission at 40, 80, and 160 Gb/s using a fiber-optical parametric pulse source,” IEEE Photon. Technol. Lett.17, 312–314 (2005).
[CrossRef]

Tsuda, Y.

Vanholsbeeck, F.

Vedadi, A.

A. Vedadi, M. A. Shoaie, and C.-S. Brés, “Near nyquist sinc optical pulse generation with fiber optical parametric ampification,” in “European Conf. on Optical Comm. 2012,” (2012), P1.10.

A. Vedadi, A. Ariaei, M. M. Jadidi, and J. A. Salehi, “Theoretical study of high repetition rate short pulse generation with fiber optical parametric amplification,” J. Lightwave Technol.30, 1263–1268 (2012).
[CrossRef]

M. Jamshidifar, A. Vedadi, D. S. Govan, and M. E. Marhic, “Continuous-wave parametric amplification in bismuth-oxide fibers,” Opt. Fiber Technol.16, 458–466 (2010).
[CrossRef]

Vedadi, A. A.

A. A. Vedadi and C.-S. Bres, “Experimental investigation of fiber optical parametric amplifier pulse generators,” in “Nonlinear Photonics,” (Optical Society of America, 2012), p. JM5A.8.

Waarts, R. G.

Westlund, M.

T. Torounidis, M. Westlund, H. Sunnerud, B.-E. Olsson, and P. Andrekson, “Signal generation and transmission at 40, 80, and 160 Gb/s using a fiber-optical parametric pulse source,” IEEE Photon. Technol. Lett.17, 312–314 (2005).
[CrossRef]

Wiberg, A.

B.-P. Kuo, A. Wiberg, C.-S. Brés, N. Alic, and S. Radic, “Ultrafast clock recovery and sampling by single parametric device,” IEEE Photon. Technol. Lett.23, 191–193 (2011).
[CrossRef]

Wong, G. K. L.

Yaffe, H. H.

European Conf. on Optical Comm. 2012

A. Vedadi, M. A. Shoaie, and C.-S. Brés, “Near nyquist sinc optical pulse generation with fiber optical parametric ampification,” in “European Conf. on Optical Comm. 2012,” (2012), P1.10.

IEE Electron. Lett.

J. Hansryd and P. Andrekson, “Wavelength tunable 40GHz pulse source based on fibre optical parametric amplifier,” IEE Electron. Lett.37, 584–585 (2001).
[CrossRef]

G.-W. Lu, K. Abedin, T. Miyazaki, and M. Marhic, “RZ-DPSK OTDM demultiplexing using fibre optical parametric amplifier with clock-modulated pump,” IEE Electron. Lett.45, 221–222 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

B.-P. Kuo, A. Wiberg, C.-S. Brés, N. Alic, and S. Radic, “Ultrafast clock recovery and sampling by single parametric device,” IEEE Photon. Technol. Lett.23, 191–193 (2011).
[CrossRef]

T. Torounidis, M. Westlund, H. Sunnerud, B.-E. Olsson, and P. Andrekson, “Signal generation and transmission at 40, 80, and 160 Gb/s using a fiber-optical parametric pulse source,” IEEE Photon. Technol. Lett.17, 312–314 (2005).
[CrossRef]

J. Li, J. Hansryd, P. Hedekvist, P. Andrekson, and S. Knudsen, “300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett.13, 987–989 (2001).
[CrossRef]

A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17, 1178–1180 (2005).
[CrossRef]

A. Mussot, A. Durécu-Legrand, E. Lantz, C. Simmoneau, D. Bayart, H. Maillotte, and T. Sylvestre, “Impact of pump phase modulation on the gain of fiber parametric amplifier,” IEEE Photon. Technol. Lett.16, 1289–1291 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Fiber Technol.

M. Jamshidifar, A. Vedadi, D. S. Govan, and M. E. Marhic, “Continuous-wave parametric amplification in bismuth-oxide fibers,” Opt. Fiber Technol.16, 458–466 (2010).
[CrossRef]

Opt. Lett.

Other

Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge, 2007).
[CrossRef]

A. A. Vedadi and C.-S. Bres, “Experimental investigation of fiber optical parametric amplifier pulse generators,” in “Nonlinear Photonics,” (Optical Society of America, 2012), p. JM5A.8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. PC: polarization controller; IM: intensity modulator; PM: phase modulator; BPF: band pass filter; WDM: wavelength division multiplexer; HNLF: highly nonlinear fiber; OSA: optical spectrum analyzer.

Fig. 2
Fig. 2

Optical spectra at the output of the HNLF for pump OFF and ON and for no signal seed (parametric ASE, dotted line), signal seed positions of 1566.6nm and 1570.3nm.

Fig. 3
Fig. 3

Results for 1557 nm pump. (a) Idler waveform and (b) spectrum for 1566.6nm signal; (c) Experiment, simulations and theoretical fit for 1566.6 nm signal corresponding to ΔβL = −2.2032γP0; (d)Idler waveform and (e) spectrum for 1570.3 nm signal; (f) Experiment, simulations and theoretical fit for 1570.3nm signal corresponding to ΔβL = −3.9753γP0;(g)Idler waveform and (h) spectrum for 1570.5nm signal; (i) Experiment, simulations and theoretical fit for 1570.5 nm signal corresponding to ΔβL = −4.1154γP0.

Fig. 4
Fig. 4

Idler pulse shape evolution as a function of input seed wavelength for (a) 0 dBm of seed power and (c) 6 dBm of seed power. (b) Experimental full width half max (FWHM) of generated idler pulse as a function of seed wavelength for 0, 3 and 6 dBm of seed power and (d) Comparison of the measured, simulated and theoretical FWHM of generated idler for 0 dBm of seed power.

Fig. 5
Fig. 5

Idler pulse shapes for (a), (b) & (c) ΔβL = −2γP0, (d), (e) & (f) ΔβL = −3γP0 and (g), (h) & (i) ΔβL = −4γP0 and different signal input powers.

Fig. 6
Fig. 6

Idler waveform at the near-Sinc shape position for frequency repetition (a) 2.75 GHz, (b) 5.5 GHz and (c) 11 GHz. (d) Comparison of the idler pulse shapes for ΔβL = −4γP0 with pump wavelength at 1552 nm (dashed line), 1556 nm (solid line) and theoretical fit from Eq. (8) at 40 GHz repetition rate. Simulations (solid line) and theoretical fit using κ +WO × L in Eq. (4) for pump wavelength at (e) 1552 nm & (g) 1556 nm at 40 GHz repetition rate.

Tables (1)

Tables Icon

Table 1 SNR (dB) of generated pulses

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A z = j { k = 2 β k k ! k A τ k + γ | A | 2 A }
A P z = j { k = 2 4 β k k ! k A P τ k + γ | A P | 2 A P } A S z = j { k = 2 4 β k k ! [ m = 0 k C k m m A S τ m ( j Δ ω S ) k m ] + γ A P 2 A I * } A I z = j { k = 2 4 β k k ! [ m = 0 k C k m m A I τ m ( j Δ ω S ) k m ] + γ A P 2 A S * } ,
A P ( L , τ ) = P 0 cos ( π f R τ ) e j γ P 0 cos 2 ( π f R τ ) L
A I ( L , τ ) = j A S * ( 0 ) γ P 0 cos 2 ( π f R τ ) g sinh ( g L ) × e j { γ P 0 cos 2 ( π f R τ ) + β 3 6 Δ ω S 3 } L
g = Δ β L 4 ( 4 γ P 0 + Δ β L ) ( 1 4 γ P 0 4 γ P 0 + Δ β L ( π f R τ ) 2 ) g 0 ( 1 2 γ P 0 4 γ P 0 + Δ β L ( π f R t ) 2 )
A I ( L , τ ) = j A S * ( 0 ) γ P 0 g 0 [ 1 2 γ P 0 + Δ β L 4 γ P 0 + Δ β L ( π f R t ) 2 ] sinh [ g 0 L ( 1 2 γ P 0 4 γ P 0 + Δ β L ( π f R t ) 2 ) ] × e j [ γ P 0 cos 2 ( π f R τ ) + β 3 6 Δ ω S 3 ] L
A I = j A S * ( 0 ) γ P 0 g 0 e { g 0 L [ 1 2 γ P 0 4 γ P 0 + Δ β L ( π f R τ t 2 ] } + j { γ P 0 [ 1 ( π f R τ ) 2 ] + β 3 6 Δ ω S 3 } L 2
T F W H M = 1 π 2 ln 2 γ P 0 L × 1 f R
A I = j A S * ( 0 ) γ P 0 L sinc ( 2 π γ P 0 L f R τ ) e j ( γ P 0 cos 2 ( π f R τ ) + β 3 6 Δ ω S 3 ) L
T F W H M 0.443 γ P 0 L × 1 f R
B k = C k e α k j [ β 3 6 Δ ω 3 z + γ P 0 π f R sin ( 2 π f R τ ) ( β 2 2 Δ ω + β 4 12 Δ ω 3 ) z 2 ] k = { S , I }
2 C S , I z 2 = [ ( γ P 0 cos 2 ( π f R τ ) ) 2 ( κ + W O z 2 ) 2 + j W O 2 z ] C S , I

Metrics