Abstract

All-optical technique for modulation format conversion from 4 channels non-return-to-zero on-off-keying (OOK) to return-to-zero 16 quadrature amplitude modulation (16QAM) employing nonlinear optical loop mirror with 1:2 coupler configuration is proposed and experimentally demonstrated at 10Gs/s. The experimentally converted 16QAM signal was distorted in its phase by cross-phase modulation induced amplitude-to-phase noise conversion. The effect of amplified spontaneous emission noise in the amplified OOK signals to the converted 16QAM’s phase was theoretically discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. M. Saleh and J. M. Simmons, “Evolution toward the next-generation core optical network,” J. Lightwave Technol.24(9), 3303–3321 (2006).
    [CrossRef]
  2. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
    [CrossRef]
  3. D. Norte and A. E. Willner, “All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks,” IEEE/OSA J. Lightwave Technol.14(6), 1170–1182 (1996).
    [CrossRef]
  4. K. Mishina, S. Kitagawa, and A. Maruta, “All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber,” Opt. Express15(13), 8444–8453 (2007).
    [CrossRef] [PubMed]
  5. A. Maruta and N. Hashimoto, “Experimental demonstration of all-optical modulation format conversion from nrz-ook to rz-8apsk based on fiber nonlinearity,” Optical Fiber Communication Conf. Expo. (OFC2012), LA, USA, Paper OM3B.
  6. G. Charlet, “Progress in optical modulation formats for high-bit rate WDM transmissions,” IEEE J. Sel. Top. Quantum Electron.12(4), 469–483 (2006).
    [CrossRef]
  7. J. Wang and J. Yang, I. M. Fazal1, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “Demonstration of 12.8-bit/s/Hz spectral efficiency using 16-QAM signal over multiple orbital-angular-momentum modes,” The 37th European Conference and Exhibition on Optical Communication (ECOC2011), Geneva, Switzerland, Paper We.10.P1.76.
  8. S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11 x 171 Gb/s PDM 16-QAM Transmission over 1440 km with a Spectral Efficiency of 6.4 b/s/Hz using High-Speed DAC,” The 36th European Conference and Exhibition on Optical Communication (ECOC2010), Turin, Itary, Paper We.8.C.1.
  9. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
    [CrossRef]
  10. G. Huang, Y. Miyoshi, A. Maruta, Y. Yoshida, and K. Kitayama, “All-optical OOK to 16QAM modulation format conversion employing nonlinear optical fiber loop mirror,” IEEE/OSA J. Lightwave Technol.30(9), 1342–1350 (2012).
    [CrossRef]
  11. G. Huang, Y. Miyoshi, Y. Yoshida, A. Maruta, and K. Kitayama, “All-optical OOK to 16QAM modulation conversion based on nonlinear optical loop mirror with 1:2 coupler,” Optical Fiber Communication Conf. Expo. (OFC2012), LA, USA, Paper OTh4H.
  12. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett.15(23), 1351–1353 (1990).
    [CrossRef] [PubMed]
  13. S. Kumar, A. Selvarajan, and G. Anand, “Nonlinear copropagation of two optical pulses of different frequencies in birefringent fibers,” J. Opt. Soc. Am. B11(5), 810–817 (1994).
    [CrossRef]
  14. M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” IEEE/OSA J. Lightwave Technol.20(3), 469–476 (2002).
    [CrossRef]

2012 (1)

G. Huang, Y. Miyoshi, A. Maruta, Y. Yoshida, and K. Kitayama, “All-optical OOK to 16QAM modulation format conversion employing nonlinear optical fiber loop mirror,” IEEE/OSA J. Lightwave Technol.30(9), 1342–1350 (2012).
[CrossRef]

2011 (1)

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

2007 (1)

2006 (3)

G. Charlet, “Progress in optical modulation formats for high-bit rate WDM transmissions,” IEEE J. Sel. Top. Quantum Electron.12(4), 469–483 (2006).
[CrossRef]

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

A. A. M. Saleh and J. M. Simmons, “Evolution toward the next-generation core optical network,” J. Lightwave Technol.24(9), 3303–3321 (2006).
[CrossRef]

2002 (1)

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” IEEE/OSA J. Lightwave Technol.20(3), 469–476 (2002).
[CrossRef]

1996 (1)

D. Norte and A. E. Willner, “All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks,” IEEE/OSA J. Lightwave Technol.14(6), 1170–1182 (1996).
[CrossRef]

1994 (1)

1990 (1)

Anand, G.

Charlet, G.

G. Charlet, “Progress in optical modulation formats for high-bit rate WDM transmissions,” IEEE J. Sel. Top. Quantum Electron.12(4), 469–483 (2006).
[CrossRef]

Essiambre, R.-J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

Fujiwara, M.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Gordon, J. P.

Ho, M. C.

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” IEEE/OSA J. Lightwave Technol.20(3), 469–476 (2002).
[CrossRef]

Horikoshi, K.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Huang, G.

G. Huang, Y. Miyoshi, A. Maruta, Y. Yoshida, and K. Kitayama, “All-optical OOK to 16QAM modulation format conversion employing nonlinear optical fiber loop mirror,” IEEE/OSA J. Lightwave Technol.30(9), 1342–1350 (2012).
[CrossRef]

Ishii, H.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Kazovsky, L. G.

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” IEEE/OSA J. Lightwave Technol.20(3), 469–476 (2002).
[CrossRef]

Kitagawa, S.

Kitayama, K.

G. Huang, Y. Miyoshi, A. Maruta, Y. Yoshida, and K. Kitayama, “All-optical OOK to 16QAM modulation format conversion employing nonlinear optical fiber loop mirror,” IEEE/OSA J. Lightwave Technol.30(9), 1342–1350 (2012).
[CrossRef]

Kobayashi, T.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Kumar, S.

Marhic, M. E.

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” IEEE/OSA J. Lightwave Technol.20(3), 469–476 (2002).
[CrossRef]

Maruta, A.

G. Huang, Y. Miyoshi, A. Maruta, Y. Yoshida, and K. Kitayama, “All-optical OOK to 16QAM modulation format conversion employing nonlinear optical fiber loop mirror,” IEEE/OSA J. Lightwave Technol.30(9), 1342–1350 (2012).
[CrossRef]

K. Mishina, S. Kitagawa, and A. Maruta, “All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber,” Opt. Express15(13), 8444–8453 (2007).
[CrossRef] [PubMed]

Masuda, H.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Matsui, M.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Mishina, K.

Miyamoto, Y.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Miyoshi, Y.

G. Huang, Y. Miyoshi, A. Maruta, Y. Yoshida, and K. Kitayama, “All-optical OOK to 16QAM modulation format conversion employing nonlinear optical fiber loop mirror,” IEEE/OSA J. Lightwave Technol.30(9), 1342–1350 (2012).
[CrossRef]

Mizoguchi, M.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Mollenauer, L. F.

Norte, D.

D. Norte and A. E. Willner, “All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks,” IEEE/OSA J. Lightwave Technol.14(6), 1170–1182 (1996).
[CrossRef]

Sakamaki, Y.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Saleh, A. A. M.

Sano, A.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Selvarajan, A.

Simmons, J. M.

Willner, A. E.

D. Norte and A. E. Willner, “All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks,” IEEE/OSA J. Lightwave Technol.14(6), 1170–1182 (1996).
[CrossRef]

Winzer, P. J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

Wong, K. Y. K.

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” IEEE/OSA J. Lightwave Technol.20(3), 469–476 (2002).
[CrossRef]

Yamazaki, H.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Yoshida, E.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

Yoshida, Y.

G. Huang, Y. Miyoshi, A. Maruta, Y. Yoshida, and K. Kitayama, “All-optical OOK to 16QAM modulation format conversion employing nonlinear optical fiber loop mirror,” IEEE/OSA J. Lightwave Technol.30(9), 1342–1350 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Charlet, “Progress in optical modulation formats for high-bit rate WDM transmissions,” IEEE J. Sel. Top. Quantum Electron.12(4), 469–483 (2006).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (4)

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “Ultra-High capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification,” IEEE/OSA J. Lightwave Technol.29(4), 578–586 (2011).
[CrossRef]

G. Huang, Y. Miyoshi, A. Maruta, Y. Yoshida, and K. Kitayama, “All-optical OOK to 16QAM modulation format conversion employing nonlinear optical fiber loop mirror,” IEEE/OSA J. Lightwave Technol.30(9), 1342–1350 (2012).
[CrossRef]

D. Norte and A. E. Willner, “All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks,” IEEE/OSA J. Lightwave Technol.14(6), 1170–1182 (1996).
[CrossRef]

M. C. Ho, M. E. Marhic, K. Y. K. Wong, and L. G. Kazovsky, “Narrow-linewidth idler generation in fiber four-wave mixing and parametric amplification by dithering two pumps in opposition of phase,” IEEE/OSA J. Lightwave Technol.20(3), 469–476 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (1)

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

Other (4)

A. Maruta and N. Hashimoto, “Experimental demonstration of all-optical modulation format conversion from nrz-ook to rz-8apsk based on fiber nonlinearity,” Optical Fiber Communication Conf. Expo. (OFC2012), LA, USA, Paper OM3B.

G. Huang, Y. Miyoshi, Y. Yoshida, A. Maruta, and K. Kitayama, “All-optical OOK to 16QAM modulation conversion based on nonlinear optical loop mirror with 1:2 coupler,” Optical Fiber Communication Conf. Expo. (OFC2012), LA, USA, Paper OTh4H.

J. Wang and J. Yang, I. M. Fazal1, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “Demonstration of 12.8-bit/s/Hz spectral efficiency using 16-QAM signal over multiple orbital-angular-momentum modes,” The 37th European Conference and Exhibition on Optical Communication (ECOC2011), Geneva, Switzerland, Paper We.10.P1.76.

S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11 x 171 Gb/s PDM 16-QAM Transmission over 1440 km with a Spectral Efficiency of 6.4 b/s/Hz using High-Speed DAC,” The 36th European Conference and Exhibition on Optical Communication (ECOC2010), Turin, Itary, Paper We.8.C.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the proposed modulation format converter.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Experimental results of the output signal when the input OOK signals are 10Gb/s PRBS with the length of 215-1. (a) waveform, (b) eye diagram, (c) constellation map.

Fig. 4
Fig. 4

Experimental results of the eye diagram and the constelation map of APSK1 and APSK2 when the input OOK signals are 10Gb/s PRBS with the length of 215-1. (a)APSK1, (b) APSK2.

Fig. 5
Fig. 5

Simulation model.

Fig. 6
Fig. 6

Simulation results of the eye diagram and constellation map of the output 16QAM signal when the input OOK signals are 10Gb/s PRBS with the length of 27-1 without ASE noise accompanied.

Fig. 7
Fig. 7

Simulation results of the power distribution and phase distribution. (a) Peak power fluctuation of the OOK signals with ASE noise accompanied. ΔP = Pactual-Pideal. (b), (c) IQ diagram and the phase fluctuation of two phase noisy QPSK 1 and 2 signals with π phase offset and 1:2 amplitude ratio which are modulated by the amplitude noisy OOK signals.

Fig. 8
Fig. 8

Simulation results of the constelation map and the eye diagram observed at the output of the converter as the superposition of two noisy QPSK signals. (a)16QAM. (b)APSK1. (c) APSK2. SNROOK1, 3 = 17.8 dB, SNROOK2, 4 = 9.5 dB.

Fig. 9
Fig. 9

(a) The fitting circle for point “C”. (b) The phase probability density function of point “C” relative to the fitting circle center.

Fig. 10
Fig. 10

Bit error rate of the converted 16QAM signal verus peak power fluctuation caused by ASE noise added to the OOK_π and OOK_π/2 signals, separately.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E 1 = 1 3 E in , E 2 =j 2 3 E in .
Φ c =2γ L eff ( P OOK1 + P OOK2 ), Φ c c =2γ L eff ( P OOK3 + P OOK4 ),
E 1 T =exp( j Φ c c ) E 2 =j 2 3 exp( j Φ c c ) E in , E 2 T =exp( j Φ c ) E 1 = 1 3 exp( j Φ c ) E in .
E out =j 2 3 E 1 T + 1 3 E 2 T = 1 3 { 2exp( j Φ c c )exp( j Φ c ) } E in .
Δ Φ c =2γ L eff ( Δ P OOK 1 +Δ P OOK 2 ), Δ Φ c c =2γ L eff ( Δ P OOK 3 +Δ P OOK 4 ).
f(Δ P OOK i )= 1 2π σ OOKi exp[ ( Δ P OOKi ) 2 2 σ OOKi 2 ],
σ c =2γ L eff ( σ OOK1 + σ OOK2 ), σ c c =2γ L eff ( σ OOK3 + σ OOK4 ).
σ OOKi 2 = k=1 n ( Δ P OOK i _k ) 2 f(Δ P OOK i _k )
BE R = 1 16 i=1 16 [ 1 Δ Φ S Δ Φ L f ( Δ Φ i ) dΔ Φ i ] ,

Metrics