Abstract

We report the observation of all-optical polarization pulling of an initially polarization-scrambled signal using parametric amplification in a highly nonlinear optical fiber. Broadband polarization pulling has been achieved both for the signal and idler waves with up to 25 dB gain using the strong polarization sensitivity of parametric amplifiers. We further derive the probability distribution function for the final polarization state, assuming a randomly polarized initial state, and we show that it agrees well with the experiments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express16(9), 6646–6651 (2008).
    [CrossRef] [PubMed]
  2. J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quant. Electron.18(2), 621–628 (2012).
    [CrossRef]
  3. V. V. Kozlov, J. Nuno, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B28(1), 100–108 (2011).
    [CrossRef]
  4. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17(2), 947–955 (2009).
    [CrossRef] [PubMed]
  5. L. Ursini, M. Santagiustina, and L. Palmieri, “Raman Nonlinear Polarization Pulling in the Pump Depleted Regime in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett.23(4), 1041–1135 (2011).
    [CrossRef]
  6. Z. Shmilovitch, N. Primerov, A. Zadok, A. Sanghoon Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express19, 25873–25880 (2011).
    [CrossRef]
  7. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, Cambridge2007).
    [CrossRef]
  8. J. F. L. Freitas, C. J. S. de Matos, M. B. Costa e Silva, and A. S. L. Gomes, “Impact of phase modulation and parametric gain on signal polarization in an anomalously dispersive optical fiber,” J. Opt. Soc. Am. B24(7), 1469–1474 (2007).
    [CrossRef]
  9. M. Guasoni and S. Wabnitz, “Nonlinear polarizers based on four-wave mixing in high-birefringence optical fibers,” J. Opt. Soc. Am. B29, 1511–1520 (2012).
    [CrossRef]
  10. Q. Lin and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parameteric amplifiers,” J. Opt. Soc. Am. B21, 1216–1224 (2004).
    [CrossRef]
  11. A. Durécu-Legrand, C. Simmoneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17(6), 1178–1180 (2005).
    [CrossRef]
  12. N. A. Silva, N. J. Muga, and A. N. Pinto, “Influence of the Stimulated Raman Scattering on the Four-Wave Mixing Process in Birefringent Fibers,” J. Lightwave Technol.27(22), 4979–4988 (2009).
    [CrossRef]
  13. A. Zadok, E. Zilka, A. Eyal, L. Thevenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express16(26), 21692–21707 (2008).
    [CrossRef] [PubMed]
  14. C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett.9(9), 1247–1249 (1997).
    [CrossRef]

2012

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quant. Electron.18(2), 621–628 (2012).
[CrossRef]

M. Guasoni and S. Wabnitz, “Nonlinear polarizers based on four-wave mixing in high-birefringence optical fibers,” J. Opt. Soc. Am. B29, 1511–1520 (2012).
[CrossRef]

2011

2009

2008

2007

2005

A. Durécu-Legrand, C. Simmoneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17(6), 1178–1180 (2005).
[CrossRef]

2004

1997

C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett.9(9), 1247–1249 (1997).
[CrossRef]

Agrawal, G. P.

Bayart, D.

A. Durécu-Legrand, C. Simmoneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17(6), 1178–1180 (2005).
[CrossRef]

Cirigliano, M.

Costa e Silva, M. B.

de Matos, C. J. S.

Durécu-Legrand, A.

A. Durécu-Legrand, C. Simmoneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17(6), 1178–1180 (2005).
[CrossRef]

Eyal, A.

Fatome, J.

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quant. Electron.18(2), 621–628 (2012).
[CrossRef]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express16(9), 6646–6651 (2008).
[CrossRef] [PubMed]

Ferrario, M.

Freitas, J. F. L.

Gomes, A. S. L.

Guasoni, M.

Kozlov, V. V.

Lantz, E.

A. Durécu-Legrand, C. Simmoneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17(6), 1178–1180 (2005).
[CrossRef]

Lin, Q.

Maillotte, H.

A. Durécu-Legrand, C. Simmoneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17(6), 1178–1180 (2005).
[CrossRef]

Marazzi, L.

Marhic, M. E.

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, Cambridge2007).
[CrossRef]

Martelli, P.

Martinelli, M.

Menyuk, C. R.

C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett.9(9), 1247–1249 (1997).
[CrossRef]

Millot, G.

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quant. Electron.18(2), 621–628 (2012).
[CrossRef]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express16(9), 6646–6651 (2008).
[CrossRef] [PubMed]

Morin, P.

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quant. Electron.18(2), 621–628 (2012).
[CrossRef]

Muga, N. J.

Mussot, A.

A. Durécu-Legrand, C. Simmoneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17(6), 1178–1180 (2005).
[CrossRef]

Nuno, J.

Palmieri, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman Nonlinear Polarization Pulling in the Pump Depleted Regime in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett.23(4), 1041–1135 (2011).
[CrossRef]

Pilipetskii, A. N.

C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett.9(9), 1247–1249 (1997).
[CrossRef]

Pinto, A. N.

Pitois, S.

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quant. Electron.18(2), 621–628 (2012).
[CrossRef]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express16(9), 6646–6651 (2008).
[CrossRef] [PubMed]

Primerov, N.

Sanghoon Chin, A.

Santagiustina, M.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman Nonlinear Polarization Pulling in the Pump Depleted Regime in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett.23(4), 1041–1135 (2011).
[CrossRef]

Shmilovitch, Z.

Silva, N. A.

Simmoneau, C.

A. Durécu-Legrand, C. Simmoneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17(6), 1178–1180 (2005).
[CrossRef]

Sylvestre, T.

A. Durécu-Legrand, C. Simmoneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17(6), 1178–1180 (2005).
[CrossRef]

Thevenaz, L.

Tur, M.

Ursini, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman Nonlinear Polarization Pulling in the Pump Depleted Regime in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett.23(4), 1041–1135 (2011).
[CrossRef]

Wabnitz, S.

Wang, D.

C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett.9(9), 1247–1249 (1997).
[CrossRef]

Zadok, A.

Zilka, E.

IEEE J. Sel. Top. Quant. Electron.

J. Fatome, P. Morin, S. Pitois, and G. Millot, “Light-by-Light Polarization Control of 10-Gb/s RZ and NRZ Telecommunication Signals,” IEEE J. Sel. Top. Quant. Electron.18(2), 621–628 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman Nonlinear Polarization Pulling in the Pump Depleted Regime in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett.23(4), 1041–1135 (2011).
[CrossRef]

A. Durécu-Legrand, C. Simmoneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett.17(6), 1178–1180 (2005).
[CrossRef]

C. R. Menyuk, D. Wang, and A. N. Pilipetskii, “Repolarization of polarization-scrambled optical signals due to polarization dependent loss,” IEEE Photon. Technol. Lett.9(9), 1247–1249 (1997).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Other

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, Cambridge2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scheme of the fiber-optical parametric polarizer; PRBS Generator: pseudorandom bit sequence generator, PC: polarization controller, OSA: optical spectrum analyzer, EDFA: erbium-doped fiber amplifier.

Fig. 2
Fig. 2

Output state and degree of polarization of the (a) signal and (b) idler waves measured by a polarimeter and visualized on the Poincaré sphere while pump power increases from 25.2 dBm to 29.7 dBm from left to right. The corresponding gain spectra are shown in (c), with the input pump power P, the parametric gain Gmax, the polarization dependent gain PDG and the signal OSNR.

Fig. 3
Fig. 3

(a) Probability distribution of signal S3-component. Crosses: experimental data from Fig. 2; Dotted curves: fits by Eq. (5) with G values and standard deviation σ compared to the experimental values of PDG and the maximal gain in insets, (b) Signal output state of polarization on the Poincaré sphere calculated from Eq. (3) for the same values of G as the maximal gain in Fig 2. The DOP is indicated in the insets.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

DOP = S 1 2 + S 2 2 + S 3 2 S 0 ,
S 1 = 2 Re ( c + c * ) | c + | 2 + | c | 2 = sin θ cos ϕ , S 2 = 2 Im ( c + c * ) | c + | 2 + | c | 2 = sin θ sin ϕ , S 3 = | c + | 2 | c | 2 | c + | 2 + | c | 2 = cos θ .
u out = c + u + exp ( g + L ) + c u exp ( g L ) ,
μ out = | c + | 2 exp ( 2 g + L ) | c | 2 exp ( 2 g L ) | c + | 2 exp ( 2 g + L ) + | c | 2 exp ( 2 g ) L = ( 1 + μ ) ( 1 μ ) G 1 ( 1 + μ ) + ( 1 μ ) G 1
μ = ( 1 + G 1 ) μ out ( 1 G 1 ) ( 1 + G 1 ) ( 1 G 1 ) μ out .
p ( μ out ) = 1 2 d μ d μ out = 2 G 1 [ ( 1 + G 1 ) ( 1 G 1 ) μ out ] 2 .
F ( μ out ) = 1 μ out p ( μ ) d μ = 1 2 + ( 1 + G 1 ) μ out ( 1 G 1 ) 2 [ ( 1 + G 1 ) ( 1 G 1 ) μ out ]

Metrics