Abstract

The Raman polarizer is a Raman amplifier which not only amplifies but also repolarizes light. We propose a relatively simple and analytically tractable model – the ideal Raman polarizer, for describing the operation of this device. The model efficiently determines key device parameters such as the degree of polarization, the alignment parameter, the gain and the RIN variance.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17, 947–955 (2009).
    [CrossRef] [PubMed]
  2. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S Wabnitz, “Theory of fiber optic Raman polarizers,” Opt. Lett.35, 3970–3972 (2010).
    [CrossRef] [PubMed]
  3. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Techn.29, 341–347 (2011).
    [CrossRef]
  4. L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Techn. Lett.23, 254–256 (2011).
    [CrossRef]
  5. N. J. Muga, M. F. S. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express19, 18707–18712 (2011).
    [CrossRef] [PubMed]
  6. P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a light beam in optical fibers,” J. Opt. Soc. Am. B29, 2046–2052 (2012).
  7. M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective All-Optical Polarization Control Induced by Raman Nonlinear Amplification,” in 36th European Conference on Optical Communications (IEEE, 2010), paper P1.19.
    [CrossRef]
  8. F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Techn. Lett.23, 1457–1459 (2011).
    [CrossRef]
  9. S. Sergeyev and S. Popov, “Two-section fiber optic Raman polarizer,” IEEE J. Quantum Electron48, 5660 (2012).
    [CrossRef]
  10. V. V. Kozlov and S. Wabnitz, “Suppression of relative intensity noise in fiber-optic Raman polarizers, IEEE Photon. Techn. Lett., 23, 1088–1090 (2011).
    [CrossRef]
  11. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Multichannel Raman polarizer with suppressed relative intensity noise for wavelength division multiplexing transmission lines,” Opt. Lett.37, 2073–2075 (2012).
    [CrossRef] [PubMed]
  12. V. V. Kozlov and S. Wabnitz, “Silicon Raman polarizer,” Opt. Lett.37, 737739 (2012).
    [CrossRef]
  13. S. V. Sergeyev, “Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier,” Opt. Express19, 24268–24279 (2011).
    [CrossRef] [PubMed]
  14. Q. Lin and G. P. Agrawal, “Vector theory of stimulated Raman scattering and its application 6to fiber-based Raman amplifiers,” J. Opt. Soc. Am. B20, 1616–1631 (2003).
    [CrossRef]

2012

2011

S. V. Sergeyev, “Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier,” Opt. Express19, 24268–24279 (2011).
[CrossRef] [PubMed]

V. V. Kozlov and S. Wabnitz, “Suppression of relative intensity noise in fiber-optic Raman polarizers, IEEE Photon. Techn. Lett., 23, 1088–1090 (2011).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Techn. Lett.23, 1457–1459 (2011).
[CrossRef]

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Techn.29, 341–347 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Techn. Lett.23, 254–256 (2011).
[CrossRef]

N. J. Muga, M. F. S. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express19, 18707–18712 (2011).
[CrossRef] [PubMed]

2010

2009

2003

Agrawal, G. P.

Ania-Castañón, J. D.

Chiarello, F.

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Techn. Lett.23, 1457–1459 (2011).
[CrossRef]

Cirigliano, M.

Fatome, J.

Ferrario, M.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17, 947–955 (2009).
[CrossRef] [PubMed]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective All-Optical Polarization Control Induced by Raman Nonlinear Amplification,” in 36th European Conference on Optical Communications (IEEE, 2010), paper P1.19.
[CrossRef]

Ferreira, M. F. S.

Gilardone, V.

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective All-Optical Polarization Control Induced by Raman Nonlinear Amplification,” in 36th European Conference on Optical Communications (IEEE, 2010), paper P1.19.
[CrossRef]

Kozlov, V. V.

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Multichannel Raman polarizer with suppressed relative intensity noise for wavelength division multiplexing transmission lines,” Opt. Lett.37, 2073–2075 (2012).
[CrossRef] [PubMed]

V. V. Kozlov and S. Wabnitz, “Silicon Raman polarizer,” Opt. Lett.37, 737739 (2012).
[CrossRef]

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Techn.29, 341–347 (2011).
[CrossRef]

V. V. Kozlov and S. Wabnitz, “Suppression of relative intensity noise in fiber-optic Raman polarizers, IEEE Photon. Techn. Lett., 23, 1088–1090 (2011).
[CrossRef]

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S Wabnitz, “Theory of fiber optic Raman polarizers,” Opt. Lett.35, 3970–3972 (2010).
[CrossRef] [PubMed]

Lin, Q.

Marazzi, L.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17, 947–955 (2009).
[CrossRef] [PubMed]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective All-Optical Polarization Control Induced by Raman Nonlinear Amplification,” in 36th European Conference on Optical Communications (IEEE, 2010), paper P1.19.
[CrossRef]

Martelli, P.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17, 947–955 (2009).
[CrossRef] [PubMed]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective All-Optical Polarization Control Induced by Raman Nonlinear Amplification,” in 36th European Conference on Optical Communications (IEEE, 2010), paper P1.19.
[CrossRef]

Martinelli, M.

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express17, 947–955 (2009).
[CrossRef] [PubMed]

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective All-Optical Polarization Control Induced by Raman Nonlinear Amplification,” in 36th European Conference on Optical Communications (IEEE, 2010), paper P1.19.
[CrossRef]

Morin, P.

Muga, N. J.

Nuño, J.

Palmieri, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Techn. Lett.23, 254–256 (2011).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Techn. Lett.23, 1457–1459 (2011).
[CrossRef]

Pinto, A. N.

Pitois, S.

Popov, S.

S. Sergeyev and S. Popov, “Two-section fiber optic Raman polarizer,” IEEE J. Quantum Electron48, 5660 (2012).
[CrossRef]

Santagiustina, M.

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Techn. Lett.23, 1457–1459 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Techn. Lett.23, 254–256 (2011).
[CrossRef]

Sergeyev, S.

S. Sergeyev and S. Popov, “Two-section fiber optic Raman polarizer,” IEEE J. Quantum Electron48, 5660 (2012).
[CrossRef]

Sergeyev, S. V.

Ursini, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Techn. Lett.23, 254–256 (2011).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Techn. Lett.23, 1457–1459 (2011).
[CrossRef]

Wabnitz, S

Wabnitz, S.

V. V. Kozlov and S. Wabnitz, “Silicon Raman polarizer,” Opt. Lett.37, 737739 (2012).
[CrossRef]

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Multichannel Raman polarizer with suppressed relative intensity noise for wavelength division multiplexing transmission lines,” Opt. Lett.37, 2073–2075 (2012).
[CrossRef] [PubMed]

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Techn.29, 341–347 (2011).
[CrossRef]

V. V. Kozlov and S. Wabnitz, “Suppression of relative intensity noise in fiber-optic Raman polarizers, IEEE Photon. Techn. Lett., 23, 1088–1090 (2011).
[CrossRef]

IEEE J. Quantum Electron

S. Sergeyev and S. Popov, “Two-section fiber optic Raman polarizer,” IEEE J. Quantum Electron48, 5660 (2012).
[CrossRef]

IEEE Photon. Techn. Lett.

V. V. Kozlov and S. Wabnitz, “Suppression of relative intensity noise in fiber-optic Raman polarizers, IEEE Photon. Techn. Lett., 23, 1088–1090 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Techn. Lett.23, 254–256 (2011).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Techn. Lett.23, 1457–1459 (2011).
[CrossRef]

J. Lightwave Techn.

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Techn.29, 341–347 (2011).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

M. Ferrario, V. Gilardone, P. Martelli, L. Marazzi, and M. Martinelli, “Effective All-Optical Polarization Control Induced by Raman Nonlinear Amplification,” in 36th European Conference on Optical Communications (IEEE, 2010), paper P1.19.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic depiction of a typical experimental setup with a co-propagating Raman polarizer. Raman pump at 1450 nm is highly polarized, whereas the state of polarization of the signal is managed with a polarization controller (PC). A wavelength-division multiplexer is used to combine signal and pump and the repolarized signal is demultiplexed at the output with a filter.

Fig. 2
Fig. 2

(a) SPolM, (b) XPolM, and (c) Raman tensors. In Figs. (b),(c) all three curves visually coincide; the blue curve is the analytical result showing exponential decay: ∝ exp(−z/Ld). Parameters are: Lc = 1 m, LB(ωs) = 20 m, ωpωs = 13.2 THz, λs = 1.55 μm, and λp = 1.45 μm, Ld = 870 m, PMD=0.14 ps km−1/2.

Fig. 3
Fig. 3

Gain (in dB) vs. Pump power for the cases of an ideal Raman polarizer (black, straight line) and a standard depolarized Raman amplifier (red, dashed line), with a fixed fiber length of 2 km, and a typical Raman gain coefficient g = 0.76 W1km−1 for parallel polarization.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

z S ( s ) = γ S ( s ) × J z ( z ) S ( s ) + γ S ( s ) × J x ( z ) S ( p ) + ( g / 2 ) [ S 0 ( p ) S ( s ) + S 0 ( s ) J R ( z ) S ( p ) ] .
J x = 8 9 diag ( 1 , 1 , 1 ) exp ( z / L d )
J R = diag ( 1 , 1 , 1 ) exp ( z / L d )
L d 1 = 1 3 ( D p Δ ω ) 2
G = 1 2 [ 1 + exp ( g P L ) ]
DOP = 1 G 1
σ s 2 = S 0 2 ( L ) / S 0 ( L ) 2 1 = ( 1 G 1 ) 2 / 3
J x counter = 8 9 diag ( 1 , 1 , 1 ) exp ( z / L d ) ,
J R counter = 1 3 diag ( 1 , 1 , 1 ) exp ( z / L d ) .
G = 1 2 ( e 2 3 g P L + e 1 3 g P L ) ,
D O P = 1 2 ( e 1 3 g P L + 1 ) 1 1 2 e 1 3 g P L ( for g P L 1 ) 1 2 G 1 / 2 .
Δ = 1 2 ( e 2 3 g P L e 1 3 g P L ) = 1 2 ( 1 + 2 G 1 + 8 G ) .
σ s 2 = 1 3 [ 1 2 ( e 1 3 g P L + 1 ) 1 ] 2 .

Metrics