Abstract

We experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various pump polarization configurations agree well with the theoretical and numerical predictions based on classical models. We discuss the impact of noise under these different polarization configurations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
    [CrossRef]
  2. N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron.14, 681–690 (2008).
    [CrossRef]
  3. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8, 560–568 (2002).
    [CrossRef]
  4. N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London)478, 360–363 (2011).
    [CrossRef]
  5. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005).
    [CrossRef]
  6. S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A85, 013845 (2012).
    [CrossRef]
  7. N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010).
    [CrossRef] [PubMed]
  8. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010).
    [CrossRef]
  9. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translations of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005).
    [CrossRef] [PubMed]
  10. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
    [CrossRef] [PubMed]
  11. I. Agha, M. Davanço, D. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides,” Opt. Lett.37, 2997–2999 (2012).
    [CrossRef] [PubMed]
  12. S. Clemmen, R. Van Laer, A. Farsi, J. S. Levy, M. Lipson, and A. Gaeta, “Towards frequency-coded q-dit manipulation using coherent four-wave mixing,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM2H.6 (2012).
  13. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express27, 2236–2244 (2005).
    [CrossRef]
  14. K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
    [CrossRef]
  15. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express14, 8995–8999 (2006).
    [CrossRef] [PubMed]
  16. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
    [CrossRef]
  17. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett.31, 3086–3088 (2006).
    [CrossRef] [PubMed]
  18. E. Brainis, S. Clemmen, and S. Massar, “Spontaneous growth of Raman Stokes and anti-Stokes waves in fibers,” Opt. Lett.32, 2819–2821 (2007).
    [CrossRef] [PubMed]
  19. B. P.-P. Kuo, J. M. Fini, L. Gruner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express20, 18611–18619 (2012).
    [CrossRef] [PubMed]

2012 (5)

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A85, 013845 (2012).
[CrossRef]

I. Agha, M. Davanço, D. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides,” Opt. Lett.37, 2997–2999 (2012).
[CrossRef] [PubMed]

K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
[CrossRef]

B. P.-P. Kuo, J. M. Fini, L. Gruner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express20, 18611–18619 (2012).
[CrossRef] [PubMed]

2011 (1)

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London)478, 360–363 (2011).
[CrossRef]

2010 (3)

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010).
[CrossRef] [PubMed]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010).
[CrossRef]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

2008 (1)

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron.14, 681–690 (2008).
[CrossRef]

2007 (2)

E. Brainis, S. Clemmen, and S. Massar, “Spontaneous growth of Raman Stokes and anti-Stokes waves in fibers,” Opt. Lett.32, 2819–2821 (2007).
[CrossRef] [PubMed]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
[CrossRef]

2006 (2)

2005 (3)

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express27, 2236–2244 (2005).
[CrossRef]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005).
[CrossRef]

C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translations of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005).
[CrossRef] [PubMed]

2002 (1)

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8, 560–568 (2002).
[CrossRef]

Agha, I.

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
[CrossRef]

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett.31, 3086–3088 (2006).
[CrossRef] [PubMed]

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005).
[CrossRef]

Alic, N.

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron.14, 681–690 (2008).
[CrossRef]

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005).
[CrossRef]

Barthélémy, A.

K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
[CrossRef]

Bettenzana, M.

K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
[CrossRef]

Brainis, E.

Chen, J.

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express27, 2236–2244 (2005).
[CrossRef]

Clemmen, S.

E. Brainis, S. Clemmen, and S. Massar, “Spontaneous growth of Raman Stokes and anti-Stokes waves in fibers,” Opt. Lett.32, 2819–2821 (2007).
[CrossRef] [PubMed]

S. Clemmen, R. Van Laer, A. Farsi, J. S. Levy, M. Lipson, and A. Gaeta, “Towards frequency-coded q-dit manipulation using coherent four-wave mixing,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM2H.6 (2012).

Coles, J. B.

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron.14, 681–690 (2008).
[CrossRef]

Couderc, V.

K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
[CrossRef]

Curtz, N.

Davanço, M.

Di Bin, P.

K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
[CrossRef]

Ding, D.-S.

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

Farsi, A.

S. Clemmen, R. Van Laer, A. Farsi, J. S. Levy, M. Lipson, and A. Gaeta, “Towards frequency-coded q-dit manipulation using coherent four-wave mixing,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM2H.6 (2012).

Fedrizzi, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A85, 013845 (2012).
[CrossRef]

Fini, J. M.

Gaeta, A.

S. Clemmen, R. Van Laer, A. Farsi, J. S. Levy, M. Lipson, and A. Gaeta, “Towards frequency-coded q-dit manipulation using coherent four-wave mixing,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM2H.6 (2012).

Gisin, N.

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005).
[CrossRef]

Gruner-Nielsen, L.

Guo, G.-C.

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005).
[CrossRef]

Harvey, J. D.

Kazovsky, L. G.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8, 560–568 (2002).
[CrossRef]

Krupa, K.

K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
[CrossRef]

Kumar, P.

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express27, 2236–2244 (2005).
[CrossRef]

Kuo, B. P.-P.

Langford, N. K.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A85, 013845 (2012).
[CrossRef]

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London)478, 360–363 (2011).
[CrossRef]

Lee, K. F.

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express27, 2236–2244 (2005).
[CrossRef]

Levy, J. S.

S. Clemmen, R. Van Laer, A. Farsi, J. S. Levy, M. Lipson, and A. Gaeta, “Towards frequency-coded q-dit manipulation using coherent four-wave mixing,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM2H.6 (2012).

Li, X.

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express27, 2236–2244 (2005).
[CrossRef]

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
[CrossRef]

Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett.31, 3086–3088 (2006).
[CrossRef] [PubMed]

Lipson, M.

S. Clemmen, R. Van Laer, A. Farsi, J. S. Levy, M. Lipson, and A. Gaeta, “Towards frequency-coded q-dit manipulation using coherent four-wave mixing,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM2H.6 (2012).

Manili, G.

K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
[CrossRef]

Marhic, M. E.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8, 560–568 (2002).
[CrossRef]

Massar, S.

McGuinness, H. J.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

McKinstrie, C. J.

Méchin, D.

Milburn, G. J.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London)478, 360–363 (2011).
[CrossRef]

Modotto, D.

K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
[CrossRef]

Munro, W. J.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London)478, 360–363 (2011).
[CrossRef]

Poppe, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A85, 013845 (2012).
[CrossRef]

Prevedel, R.

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London)478, 360–363 (2011).
[CrossRef]

Provo, R.

Radic, S.

B. P.-P. Kuo, J. M. Fini, L. Gruner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis,” Opt. Express20, 18611–18619 (2012).
[CrossRef] [PubMed]

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron.14, 681–690 (2008).
[CrossRef]

C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translations of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005).
[CrossRef] [PubMed]

Ramelow, S.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A85, 013845 (2012).
[CrossRef]

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London)478, 360–363 (2011).
[CrossRef]

Raymer, M. G.

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translations of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005).
[CrossRef] [PubMed]

Shi, B.-S.

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

Simon, C.

Srinivasan, K.

Takesue, H.

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010).
[CrossRef]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005).
[CrossRef]

Thew, R.

Thurston, D.

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005).
[CrossRef]

Tonello, A.

K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
[CrossRef]

Uesaka, K.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8, 560–568 (2002).
[CrossRef]

Van Laer, R.

S. Clemmen, R. Van Laer, A. Farsi, J. S. Levy, M. Lipson, and A. Gaeta, “Towards frequency-coded q-dit manipulation using coherent four-wave mixing,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM2H.6 (2012).

Voss, P. L.

X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurements of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express27, 2236–2244 (2005).
[CrossRef]

Wabnitz, S.

K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
[CrossRef]

Windmiller, J. R.

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron.14, 681–690 (2008).
[CrossRef]

Wong, K. K.-Y.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8, 560–568 (2002).
[CrossRef]

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
[CrossRef]

Zbinden, H.

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express18, 22099–22104 (2010).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005).
[CrossRef]

Zeilinger, A.

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A85, 013845 (2012).
[CrossRef]

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London)478, 360–363 (2011).
[CrossRef]

Zhou, Z.-Y.

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

Zou, X.-B.

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

N. Alic, J. R. Windmiller, J. B. Coles, and S. Radic, “Two-pump parametric optical delays,” IEEE J. Sel. Top. Quantum Electron.14, 681–690 (2008).
[CrossRef]

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8, 560–568 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Krupa, M. Bettenzana, A. Tonello, D. Modotto, G. Manili, V. Couderc, P. Di Bin, S. Wabnitz, and A. Barthélémy, “Four-wave mixing in nonlinear fiber with two intracavity frequency-shifted laser pumps,” IEEE Photon. Technol. Lett.24, 258–260 (2012).
[CrossRef]

Nature (London) (2)

N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” Nature (London)478, 360–363 (2011).
[CrossRef]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London)437, 116–120 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. A (4)

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007).
[CrossRef]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Image transfer through two sequential four wave-mixing processes in hot atomic vapor,” Phys. Rev. A85, 053815 (2012).
[CrossRef]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A82, 013833 (2010).
[CrossRef]

S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A. Zeilinger, “Polarization-entanglement-conserving frequency conversion of photons,” Phys. Rev. A85, 013845 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic, “Quantum frequency translation of single-photon states in a photonic crystal fiber,” Phys. Rev. Lett.105, 093604 (2010).
[CrossRef] [PubMed]

Other (1)

S. Clemmen, R. Van Laer, A. Farsi, J. S. Levy, M. Lipson, and A. Gaeta, “Towards frequency-coded q-dit manipulation using coherent four-wave mixing,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM2H.6 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: See the text for details.

Fig. 2
Fig. 2

Left. Numerical simulations of dual pump FWM. Red: signal at 1549.2 nm; Blue: BS idler at 1526.43 nm; Green: DFWM at 1532.3 nm. Cases A – D are described in the text. Right. Experimental spectra from an optical spectrum analyzer in the strong signal regime. Cases A–D correspond to the numerical simulations shown of the left panel.

Fig. 3
Fig. 3

Left. Experimental results with photon counters (see text for details). Right. Raman gain calculated from noise measurements of an extended cavity laser (ECL) at 1540.7 nm.

Metrics