Abstract

We have theoretically and experimentally investigated using a dual parallel Mach-Zehnder modulator (DP-MZM) in an RF photonic link to cancel the second harmonic distortion due to the photodiode. Biasing the DP-MZM for single sideband modulation, the second harmonic generated by the DP-MZM can be set out of phase with the second harmonic generated at the photodiode. We measure the output intercept point of the second harmonic distortion of the link to be 55.3 dBm, which is an improvement of over 32 dB as compared to only the photodiode.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech.46(12), 2317–2323 (1998).
    [CrossRef]
  2. C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett.13(22), 678–680 (1977).
    [CrossRef]
  3. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
    [CrossRef]
  4. P. S. Devgan, V. J. Urick, J. F. Diehl, and K. J. Williams, “Improvement in the phase noise of a 10 GHz optoelectronic oscillator using all-photonic gain,” J. Lightwave Technol.27(15), 3189–3193 (2009).
    [CrossRef]
  5. L. Wang, N. Zhu, W. Li, and J. Liu, “A frequency-doubling Optoelectronic Oscillator based on a dual-parallel Mach–Zehnder Modulator and a chirped Fiber Bragg Grating,” IEEE Photon. Technol. Lett.23(22), 1688–1690 (2011).
    [CrossRef]
  6. W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach–Zehnder Modulator,” IEEE Photon. J.4(2), 427–436 (2012).
    [CrossRef]
  7. P. S. Devgan, V. J. Urick, and K. J. Williams, “Detection of low-power RF signals using a two laser multimode optoelectronic oscillator,” IEEE Photon. Technol. Lett.24, 857–859 (2012).
  8. R. R. Hayes and D. L. Persechini, “Nonlinearity of p-i-n photodetectors,” IEEE Photon. Technol. Lett.5(1), 70–72 (1993).
    [CrossRef]
  9. H. Jiang and P. K. L. Yu, “Equivalent circuit analysis of harmonic distortion in photodiodes,” IEEE Photon. Technol. Lett.10(11), 1608–1610 (1998).
    [CrossRef]
  10. V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol.29(8), 1182–1205 (2011).
    [CrossRef]
  11. D. M. Pozar, Microwave Engineering (Wiley, 1998)
  12. A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett.21(21), 1642–1644 (2009).
    [CrossRef]
  13. J. D. McKinney, D. E. Leaird, A. M. Weiner, and K. J. Williams, “Measurement of photodiode harmonic distortion using optical comb sources and high-resolution optical filtering,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2009), paper CWI5.
  14. A. S. Hastings, V. Urick, C. Sunderman, J. Diehl, J. McKinney, D. Tulchinsky, P. Devgan, and K. Williams, “Suppression of even-order photodiode nonlinearities in multioctave photonic links,” J. Lightwave Technol.26(15), 2557–2562 (2008).
    [CrossRef]
  15. H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett.31(21), 1848–1849 (1995).
    [CrossRef]
  16. G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron.20(10), 1208–1216 (1984).
    [CrossRef]
  17. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett.33(1), 74–75 (1997).
    [CrossRef]
  18. B. Hraimel, X. Zhang, Y. Pei, K. Wu, T. Liu, T. Xu, and Q. Nie, “Optical single-sideband modulation with tunable optical carrier to sideband ratio in radio over fiber systems,” J. Lightwave Technol.29(5), 775–781 (2011).
    [CrossRef]
  19. S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm.8(7), 1377–1381 (1990).
    [CrossRef]
  20. G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder Modulators,” IEEE Photon. Technol. Lett.21(21), 1627–1629 (2009).
    [CrossRef]
  21. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
    [CrossRef]
  22. T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett.16(6), 1534–1536 (2004).
    [CrossRef]
  23. S.-K. Kim, W. Liu, Q. Pei, L. R. Dalton, and H. R. Fetterman, “Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator,” Opt. Express19(8), 7865–7871 (2011).
    [CrossRef] [PubMed]
  24. K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol.14(1), 84–96 (1996).
    [CrossRef]

2012 (2)

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach–Zehnder Modulator,” IEEE Photon. J.4(2), 427–436 (2012).
[CrossRef]

P. S. Devgan, V. J. Urick, and K. J. Williams, “Detection of low-power RF signals using a two laser multimode optoelectronic oscillator,” IEEE Photon. Technol. Lett.24, 857–859 (2012).

2011 (4)

2010 (1)

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

2009 (3)

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett.21(21), 1642–1644 (2009).
[CrossRef]

G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder Modulators,” IEEE Photon. Technol. Lett.21(21), 1627–1629 (2009).
[CrossRef]

P. S. Devgan, V. J. Urick, J. F. Diehl, and K. J. Williams, “Improvement in the phase noise of a 10 GHz optoelectronic oscillator using all-photonic gain,” J. Lightwave Technol.27(15), 3189–3193 (2009).
[CrossRef]

2008 (1)

2006 (1)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

2004 (1)

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett.16(6), 1534–1536 (2004).
[CrossRef]

1998 (2)

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech.46(12), 2317–2323 (1998).
[CrossRef]

H. Jiang and P. K. L. Yu, “Equivalent circuit analysis of harmonic distortion in photodiodes,” IEEE Photon. Technol. Lett.10(11), 1608–1610 (1998).
[CrossRef]

1997 (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett.33(1), 74–75 (1997).
[CrossRef]

1996 (1)

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol.14(1), 84–96 (1996).
[CrossRef]

1995 (1)

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett.31(21), 1848–1849 (1995).
[CrossRef]

1993 (1)

R. R. Hayes and D. L. Persechini, “Nonlinearity of p-i-n photodetectors,” IEEE Photon. Technol. Lett.5(1), 70–72 (1993).
[CrossRef]

1990 (1)

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm.8(7), 1377–1381 (1990).
[CrossRef]

1984 (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron.20(10), 1208–1216 (1984).
[CrossRef]

1977 (1)

C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett.13(22), 678–680 (1977).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett.33(1), 74–75 (1997).
[CrossRef]

Bucholtz, F.

Campillo, A. L.

Cassaboom, J. A.

C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett.13(22), 678–680 (1977).
[CrossRef]

Chang, C.

C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett.13(22), 678–680 (1977).
[CrossRef]

Dagenais, M.

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol.14(1), 84–96 (1996).
[CrossRef]

Dalton, L. R.

de Ridder, R. M.

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm.8(7), 1377–1381 (1990).
[CrossRef]

Devgan, P.

Devgan, P. S.

Dexter, J. L.

Diehl, J.

Diehl, J. F.

Esman, R. D.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech.46(12), 2317–2323 (1998).
[CrossRef]

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol.14(1), 84–96 (1996).
[CrossRef]

Fetterman, H.

G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder Modulators,” IEEE Photon. Technol. Lett.21(21), 1627–1629 (2009).
[CrossRef]

Fetterman, H. R.

Hastings, A. S.

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett.21(21), 1642–1644 (2009).
[CrossRef]

A. S. Hastings, V. Urick, C. Sunderman, J. Diehl, J. McKinney, D. Tulchinsky, P. Devgan, and K. Williams, “Suppression of even-order photodiode nonlinearities in multioctave photonic links,” J. Lightwave Technol.26(15), 2557–2562 (2008).
[CrossRef]

Hayes, R. R.

R. R. Hayes and D. L. Persechini, “Nonlinearity of p-i-n photodetectors,” IEEE Photon. Technol. Lett.5(1), 70–72 (1993).
[CrossRef]

Hraimel, B.

Izutsu, M.

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett.16(6), 1534–1536 (2004).
[CrossRef]

Jiang, H.

H. Jiang and P. K. L. Yu, “Equivalent circuit analysis of harmonic distortion in photodiodes,” IEEE Photon. Technol. Lett.10(11), 1608–1610 (1998).
[CrossRef]

Kawanishi, T.

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett.16(6), 1534–1536 (2004).
[CrossRef]

Kim, S.-K.

Korotky, S. K.

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm.8(7), 1377–1381 (1990).
[CrossRef]

Li, S.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

Li, W.

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach–Zehnder Modulator,” IEEE Photon. J.4(2), 427–436 (2012).
[CrossRef]

L. Wang, N. Zhu, W. Li, and J. Liu, “A frequency-doubling Optoelectronic Oscillator based on a dual-parallel Mach–Zehnder Modulator and a chirped Fiber Bragg Grating,” IEEE Photon. Technol. Lett.23(22), 1688–1690 (2011).
[CrossRef]

Liu, J.

L. Wang, N. Zhu, W. Li, and J. Liu, “A frequency-doubling Optoelectronic Oscillator based on a dual-parallel Mach–Zehnder Modulator and a chirped Fiber Bragg Grating,” IEEE Photon. Technol. Lett.23(22), 1688–1690 (2011).
[CrossRef]

Liu, T.

Liu, W.

S.-K. Kim, W. Liu, Q. Pei, L. R. Dalton, and H. R. Fetterman, “Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator,” Opt. Express19(8), 7865–7871 (2011).
[CrossRef] [PubMed]

G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder Modulators,” IEEE Photon. Technol. Lett.21(21), 1627–1629 (2009).
[CrossRef]

Livingston, M.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech.46(12), 2317–2323 (1998).
[CrossRef]

McKinney, J.

McKinney, J. D.

Meslener, G. J.

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron.20(10), 1208–1216 (1984).
[CrossRef]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

Nichols, L. T.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech.46(12), 2317–2323 (1998).
[CrossRef]

Nie, Q.

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett.33(1), 74–75 (1997).
[CrossRef]

Parent, M. G.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech.46(12), 2317–2323 (1998).
[CrossRef]

Pei, Q.

Pei, Y.

Persechini, D. L.

R. R. Hayes and D. L. Persechini, “Nonlinearity of p-i-n photodetectors,” IEEE Photon. Technol. Lett.5(1), 70–72 (1993).
[CrossRef]

Roman, J. E.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech.46(12), 2317–2323 (1998).
[CrossRef]

Schmuck, H.

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett.31(21), 1848–1849 (1995).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett.33(1), 74–75 (1997).
[CrossRef]

Sunderman, C.

Tavik, G. C.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech.46(12), 2317–2323 (1998).
[CrossRef]

Taylor, H. F.

C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett.13(22), 678–680 (1977).
[CrossRef]

Tulchinsky, D.

Tulchinsky, D. A.

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett.21(21), 1642–1644 (2009).
[CrossRef]

Urick, V.

Urick, V. J.

Wang, L.

L. Wang, N. Zhu, W. Li, and J. Liu, “A frequency-doubling Optoelectronic Oscillator based on a dual-parallel Mach–Zehnder Modulator and a chirped Fiber Bragg Grating,” IEEE Photon. Technol. Lett.23(22), 1688–1690 (2011).
[CrossRef]

Wang, L. X.

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach–Zehnder Modulator,” IEEE Photon. J.4(2), 427–436 (2012).
[CrossRef]

Wiliams, K. J.

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech.46(12), 2317–2323 (1998).
[CrossRef]

Williams, K.

Williams, K. J.

P. S. Devgan, V. J. Urick, and K. J. Williams, “Detection of low-power RF signals using a two laser multimode optoelectronic oscillator,” IEEE Photon. Technol. Lett.24, 857–859 (2012).

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-haul analog photonics,” J. Lightwave Technol.29(8), 1182–1205 (2011).
[CrossRef]

P. S. Devgan, V. J. Urick, J. F. Diehl, and K. J. Williams, “Improvement in the phase noise of a 10 GHz optoelectronic oscillator using all-photonic gain,” J. Lightwave Technol.27(15), 3189–3193 (2009).
[CrossRef]

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett.21(21), 1642–1644 (2009).
[CrossRef]

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol.14(1), 84–96 (1996).
[CrossRef]

Wu, K.

Xu, T.

Yu, P. K. L.

H. Jiang and P. K. L. Yu, “Equivalent circuit analysis of harmonic distortion in photodiodes,” IEEE Photon. Technol. Lett.10(11), 1608–1610 (1998).
[CrossRef]

Zhang, H.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

Zhang, X.

Zheng, X.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

Zhou, B.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

Zhu, G.

G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder Modulators,” IEEE Photon. Technol. Lett.21(21), 1627–1629 (2009).
[CrossRef]

Zhu, N.

L. Wang, N. Zhu, W. Li, and J. Liu, “A frequency-doubling Optoelectronic Oscillator based on a dual-parallel Mach–Zehnder Modulator and a chirped Fiber Bragg Grating,” IEEE Photon. Technol. Lett.23(22), 1688–1690 (2011).
[CrossRef]

Zhu, N. H.

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach–Zehnder Modulator,” IEEE Photon. J.4(2), 427–436 (2012).
[CrossRef]

Electron. Lett. (3)

C. Chang, J. A. Cassaboom, and H. F. Taylor, “Fiber optic delay line devices for RF signal processing,” Electron. Lett.13(22), 678–680 (1977).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett.33(1), 74–75 (1997).
[CrossRef]

H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett.31(21), 1848–1849 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron.20(10), 1208–1216 (1984).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

S. K. Korotky and R. M. de Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Comm.8(7), 1377–1381 (1990).
[CrossRef]

IEEE Photon. J. (1)

W. Li, N. H. Zhu, and L. X. Wang, “Reconfigurable instantaneous frequency measurement system based on dual-parallel Mach–Zehnder Modulator,” IEEE Photon. J.4(2), 427–436 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

P. S. Devgan, V. J. Urick, and K. J. Williams, “Detection of low-power RF signals using a two laser multimode optoelectronic oscillator,” IEEE Photon. Technol. Lett.24, 857–859 (2012).

R. R. Hayes and D. L. Persechini, “Nonlinearity of p-i-n photodetectors,” IEEE Photon. Technol. Lett.5(1), 70–72 (1993).
[CrossRef]

H. Jiang and P. K. L. Yu, “Equivalent circuit analysis of harmonic distortion in photodiodes,” IEEE Photon. Technol. Lett.10(11), 1608–1610 (1998).
[CrossRef]

L. Wang, N. Zhu, W. Li, and J. Liu, “A frequency-doubling Optoelectronic Oscillator based on a dual-parallel Mach–Zehnder Modulator and a chirped Fiber Bragg Grating,” IEEE Photon. Technol. Lett.23(22), 1688–1690 (2011).
[CrossRef]

G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder Modulators,” IEEE Photon. Technol. Lett.21(21), 1627–1629 (2009).
[CrossRef]

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett.22(24), 1775–1777 (2010).
[CrossRef]

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett.16(6), 1534–1536 (2004).
[CrossRef]

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodetector nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett.21(21), 1642–1644 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

J. E. Roman, L. T. Nichols, K. J. Wiliams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, “Fiber-optic remoting of an ultrahigh dynamic range radar,” IEEE Trans. Microw. Theory Tech.46(12), 2317–2323 (1998).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (1)

Other (2)

D. M. Pozar, Microwave Engineering (Wiley, 1998)

J. D. McKinney, D. E. Leaird, A. M. Weiner, and K. J. Williams, “Measurement of photodiode harmonic distortion using optical comb sources and high-resolution optical filtering,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2009), paper CWI5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photonic link using a dual parallel Mach Zehnder modulator (DP-MZM) in order to cancel photodiode induced second harmonic nonlinearities. EDFA: Erbium-doped fiber amplifier, PD: Photodiode, ESA: Electrical spectrum analyzer, OSA: Optical spectrum analyzer.

Fig. 2
Fig. 2

The measured OIP22H and OIP33H of the 30 μm diameter photodiode using two phase locked lasers.

Fig. 3
Fig. 3

(a) The optical spectrum of the SSB signal at 7 GHz. (b) The measured OIP22H and OIP33H of the photonic link with the second harmonic cancellation condition met.

Fig. 4
Fig. 4

The measured RF power of the two bias conditions at 7 GHz. (Inset) The SSB optical spectrums of the two bias conditions.

Fig. 5
Fig. 5

The measured RF power of the fundamental at 7 GHz at the bias conditions of maximum RF power (red line) and second harmonic cancellation (blue line). (Inset) The RF power of the second harmonic at 14 GHz for the maximum RF power bias condition.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

[ E out1,upperMZM (t) E out2,upperMZM (t) ]= 1 2 [ 1 i i 1 ][ e i ϕ 1 (t) 0 0 1 ][ 1 i i 1 ][ E in (t) 2 0 ]
[ E out1,lowerMZM (t) E out2,lowerMZM (t) ]= 1 2 [ 1 i i 1 ][ 1 0 0 e i ϕ 2 (t) ][ 1 i i 1 ][ i E in (t) 2 0 ]
[ E out1 (t) E out2 (t) ]= 1 2 [ 1 i i 1 ][ ( e i ϕ 1 (t) 1) E in (t) 2 2 i e i ϕ dc3 (1 e i ϕ 2 (t) ) E in (t) 2 2 ]
E out (t)= 1 4 [ ( e i ϕ 1 (t) 1) e i ϕ dc3 (1 e i ϕ 2 (t) ) ] E in (t)
E out (t)= 1 4 [ e i ϕ dc1 ( n= J n ( ϕ rf1 ) e in Ω rf t )1 e i ϕ dc3 + e i ϕ dc3 e i ϕ dc2 ( n= i n J n ( ϕ rf2 ) e in Ω rf t ) ] E in (t)
E carrier (t)= E ¯ in e i ω o t 4 [ 1 e i ϕ dc3 + e i ϕ dc1 J 0 ( ϕ rf1 )+ e i ϕ dc3 e i ϕ dc2 J 0 ( ϕ rf2 ) ], E usb,fund (t)= E ¯ in e i ω o ti Ω rf t 4 [ e i ϕ dc1 J 1 ( ϕ rf1 )+i e i ϕ dc3 e i ϕ dc2 J 1 ( ϕ rf2 ) ], E lsb,fund (t)= E ¯ in e i ω o t+i Ω rf t 4 [ e i ϕ dc1 J 1 ( ϕ rf1 )+i e i ϕ dc3 e i ϕ dc2 J 1 ( ϕ rf2 ) ], E usb,second (t)= E ¯ in e i ω o ti2 Ω rf t 4 [ e i ϕ dc1 J 2 ( ϕ rf1 ) e i ϕ dc3 e i ϕ dc2 J 2 ( ϕ rf2 ) ], E lsb,second (t)= E ¯ in e i ω o t+i2 Ω rf t 4 [ e i ϕ dc1 J 2 ( ϕ rf1 ) e i ϕ dc3 e i ϕ dc2 J 2 ( ϕ rf2 ) ],
P o,DPMZM (t)= α MZM P laser 16 [ 4( e i ϕ 1 (t) + e i ϕ 1 (t) )( e i ϕ 2 (t) + e i ϕ 2 (t) )+( e i ϕ dc3 + e i ϕ dc3 ) ( e i ϕ 1 (t)i ϕ dc3 + e i ϕ dc3 i ϕ 1 (t) )( e i ϕ 2 (t)+i ϕ dc3 + e i ϕ 2 (t)i ϕ dc3 ) +( e i ϕ 1 (t)i ϕ 2 (t)i ϕ dc3 + e i ϕ 1 (t)+i ϕ 2 (t)+i ϕ dc3 ) ],
P o,DPMZM (t)= α MZM P laser 16 [ 4+2cos( ϕ dc3 )2cos( ϕ dc1 + ϕ rf1 sin( Ω rf t)) 2cos( ϕ dc2 + ϕ rf2 cos( Ω rf t)) 2cos( ϕ dc1 ϕ dc3 + ϕ rf1 sin( Ω rf t)) 2cos( ϕ dc2 + ϕ dc3 + ϕ rf2 cos( Ω rf t)) +2cos( ϕ dc1 ϕ dc2 ϕ dc3 + ϕ rf1 sin( Ω rf t) ϕ rf2 cos( Ω rf t)) ],
P o,DPMZM (t)= α MZM P laser 16 [ 4+2cos( ϕ dc3 ) 2[ cos( ϕ dc1 )cos( ϕ rf1 sin( Ω rf t)) sin( ϕ dc1 )sin( ϕ rf1 sin( Ω rf t)) ] 2[ cos( ϕ dc2 )cos( ϕ rf2 cos( Ω rf t)) sin( ϕ dc2 )sin( ϕ rf2 cos( Ω rf t)) ] 2[ cos( ϕ dc1 ϕ dc3 )cos( ϕ rf1 sin( Ω rf t)) sin( ϕ dc1 ϕ dc3 )sin( ϕ rf1 sin( Ω rf t)) ] 2[ cos( ϕ dc2 + ϕ dc3 )cos( ϕ rf2 cos( Ω rf t)) sin( ϕ dc2 + ϕ dc3 )sin( ϕ rf2 cos( Ω rf t)) ] +2[ cos( ϕ dc1 ϕ dc2 ϕ dc3 )cos( σ rf sin( Ω rf t+ φ rf )) +sin( ϕ dc1 ϕ dc2 ϕ dc3 )sin( σ rf sin( Ω rf t+ φ rf )) ] ],
P o,DPMZM (t)= α MZM P laser 16 [ 4+2cos( ϕ dc3 ) 2[ cos( ϕ dc1 )+cos( ϕ dc1 ϕ dc3 ) ]cos( ϕ rf1 sin( Ω rf t)) 2[ cos( ϕ dc2 )+cos( ϕ dc2 + ϕ dc3 ) ]cos( ϕ rf2 cos( Ω rf t)) +2[ sin( ϕ dc1 )+sin( ϕ dc1 ϕ dc3 ) ]sin( ϕ rf1 sin( Ω rf t)) +2[ sin( ϕ dc2 )+sin( ϕ dc2 + ϕ dc3 ) ]sin( ϕ rf2 cos( Ω rf t)) +2cos( ϕ dc1 ϕ dc2 ϕ dc3 )cos( σ rf sin( Ω rf t+ φ rf )) +2sin( ϕ dc1 ϕ dc2 ϕ dc3 )sin( σ rf sin( Ω rf t+ φ rf )) ],
cos( ϕ rf1 sin( Ω rf t))= J o ( ϕ rf1 )+2 n=1 J 2n ( ϕ rf1 )cos (2n Ω rf t) cos( ϕ rf2 cos( Ω rf t))= J o ( ϕ rf2 )+2 n=1 (1) n J 2n ( ϕ rf2 )cos (2n Ω rf t) sin( ϕ rf1 sin( Ω rf t))=2 n=1 J 2n1 ( ϕ rf1 )sin ((2n1) Ω rf t) sin( ϕ rf2 cos( Ω rf t))=2 n=1 (1) n J 2n1 ( ϕ rf2 )cos ((2n1) Ω rf t) cos( σ rf sin( Ω rf t+ φ rf ))= J o ( σ rf )+2 n=1 J 2n ( σ rf )cos (2n( Ω rf t+ φ rf )) sin( σ rf sin( Ω rf t+ φ rf ))=2 n=1 J 2n1 ( σ rf )sin ((2n1)( Ω rf t+ φ rf ))
P DC = α MZM P laser 16 [ 4+2cos( ϕ dc3 ) 2 J 0 ( ϕ rf1 )[cos( ϕ dc1 )+cos( ϕ dc1 ϕ dc3 )] 2 J 0 ( ϕ rf2 )[cos( ϕ dc2 )+cos( ϕ dc2 + ϕ dc3 )] +2 J 0 ( σ rf )cos( ϕ dc1 ϕ dc2 ϕ dc3 ) ], P Fund (t)= α MZM P laser 16 [ 4 J 1 ( ϕ rf1 )[sin( ϕ dc1 )+sin( ϕ dc1 ϕ dc3 )]sin( Ω rf t) +4 J 1 ( ϕ rf2 )[sin( ϕ dc2 )+sin( ϕ dc2 + ϕ dc3 )]cos( Ω rf t) +4 J 1 ( σ rf )sin( ϕ dc1 ϕ dc2 ϕ dc3 )sin( Ω rf t+ φ rf ) ], P Second (t)= α MZM P laser 16 [ 4 J 2 ( ϕ rf1 )[cos( ϕ dc1 )+cos( ϕ dc1 ϕ dc3 )]cos(2 Ω rf t) +4 J 2 ( ϕ rf2 )[cos( ϕ dc2 )+cos( ϕ dc2 + ϕ dc3 )]cos(2 Ω rf t) +4 J 2 ( σ rf )cos( ϕ dc1 ϕ dc2 ϕ dc3 )cos(2 Ω rf t+2 φ rf ) ],
I DC 2ζ[ 2+cos( ϕ dc3 )cos( ϕ dc1 )cos( ϕ dc2 )cos( ϕ dc1 ϕ dc3 ) cos( ϕ dc2 + ϕ dc3 )+cos( ϕ dc1 ϕ dc2 ϕ dc3 ) ], I Fund (t)2 ϕ rf ζ[ (sin( ϕ dc1 )+sin( ϕ dc1 ϕ dc3 ))sin( Ω rf t) +(sin( ϕ dc2 )+sin( ϕ dc2 + ϕ dc3 ))cos( Ω rf t) + 2 sin( ϕ dc1 ϕ dc2 ϕ dc3 )sin( Ω rf t+ φ rf ) ], I Second (t) 1 2 ϕ rf 2 ζ[ (cos( ϕ dc1 )+cos( ϕ dc1 ϕ dc3 ))cos(2 Ω rf t) +(cos( ϕ dc2 )+cos( ϕ dc2 + ϕ dc3 ))cos(2 Ω rf t) +2cos( ϕ dc1 ϕ dc2 ϕ dc3 )cos(2 Ω rf t+2 φ rf ) ],
P Fund (t)= 2 ϕ rf ζ σ comb sin( Ω rf t+ φ comb + φ dc ), σ dc = [ sin( ϕ dc1 )+sin( ϕ dc1 ϕ dc3 ) ] 2 + [ sin( ϕ dc2 )+sin( ϕ dc2 + ϕ dc3 ) ] 2 φ dc =arctan( sin( ϕ dc2 )+sin( ϕ dc2 + ϕ dc3 ) sin( ϕ dc1 )+sin( ϕ dc1 ϕ dc3 ) ) σ comb = σ dc 2 +2 sin 2 ( ϕ dc1 ϕ dc2 ϕ dc3 ) +2 2 σ dc sin( ϕ dc1 ϕ dc2 ϕ dc3 )cos( φ rf φ dc ) φ comb =arctan( 2 sin( ϕ dc1 ϕ dc2 ϕ dc3 )sin( φ rf φ dc ) σ dc + 2 sin( ϕ dc1 ϕ dc2 ϕ dc3 )cos( φ rf φ dc ) )
I PD ( P opt, i n )= a 0 + a 1 ( P opt , in P dc )+ a 2 ( P opt , in P dc ) 2 +
I PD ( P opt , in )= a 2 ( ϕ rf ζ σ comb ) 2 2cos(2 Ω rf t+2 φ comb +2 φ dc )

Metrics