Abstract

We newly propose and experimentally demonstrate a differential measurement scheme for Brillouin optical correlation domain analysis, where the difference between Brillouin gain spectra constructed by a normal and a phase-modulated Brillouin pump waves are analyzed to measure local Brillouin frequencies in optical fibers. In experiments, a five-fold enhancement in the spatial resolution is obtained compared to an ordinary BOCDA system under the same modulation parameters, as a result of the improved dynamic range by the suppression of background noises.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett.18(18), 1561–1563 (1993).
    [CrossRef] [PubMed]
  2. M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
    [CrossRef]
  3. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B22(6), 1321–1324 (2005).
    [CrossRef]
  4. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).
  5. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett.31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  6. K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett.19(23), 1928–1930 (2007).
    [CrossRef]
  7. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett.36(11), 2062–2064 (2011).
    [CrossRef] [PubMed]
  8. K. Y. Song, Z. He, and K. Hotate, “Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme,” Opt. Express14(10), 4256–4263 (2006).
    [CrossRef] [PubMed]
  9. K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol.25(5), 1238–1246 (2007).
    [CrossRef]
  10. J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, and S. B. Lee, “Variable-frequency lock-in detection for the suppression of beat noise in Brillouin optical correlation domain analysis,” Opt. Express19(19), 18721–18728 (2011).
    [CrossRef] [PubMed]
  11. K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett.18(24), 2653–2655 (2006).
    [CrossRef]
  12. K. Hotate and H. Arai, “Enlargement of measurement range of simplified BOCDA fiber-optic distributed strain sensing system using a temporal gating scheme,” Proc. SPIE5855, 184–187 (2005).
    [CrossRef]
  13. K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett.18(3), 499–501 (2006).
    [CrossRef]
  14. J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, and S. B. Lee, “Bidirectional measurement for Brillouin optical correlation domain analysis,” Opt. Express20(10), 11091–11096 (2012).
    [CrossRef] [PubMed]

2012 (1)

2011 (2)

2007 (2)

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol.25(5), 1238–1246 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett.19(23), 1928–1930 (2007).
[CrossRef]

2006 (4)

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett.18(24), 2653–2655 (2006).
[CrossRef]

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett.18(3), 499–501 (2006).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme,” Opt. Express14(10), 4256–4263 (2006).
[CrossRef] [PubMed]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett.31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

2005 (2)

K. Hotate and H. Arai, “Enlargement of measurement range of simplified BOCDA fiber-optic distributed strain sensing system using a temporal gating scheme,” Proc. SPIE5855, 184–187 (2005).
[CrossRef]

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B22(6), 1321–1324 (2005).
[CrossRef]

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

1997 (1)

M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

1993 (1)

Abe, K.

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett.18(24), 2653–2655 (2006).
[CrossRef]

Alahbabi, M. N.

Arai, H.

K. Hotate and H. Arai, “Enlargement of measurement range of simplified BOCDA fiber-optic distributed strain sensing system using a temporal gating scheme,” Proc. SPIE5855, 184–187 (2005).
[CrossRef]

Bao, X.

Cho, Y. T.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

He, Z.

Hotate, K.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett.36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett.19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol.25(5), 1238–1246 (2007).
[CrossRef]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett.18(24), 2653–2655 (2006).
[CrossRef]

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett.18(3), 499–501 (2006).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett.31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Y. Song, Z. He, and K. Hotate, “Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme,” Opt. Express14(10), 4256–4263 (2006).
[CrossRef] [PubMed]

K. Hotate and H. Arai, “Enlargement of measurement range of simplified BOCDA fiber-optic distributed strain sensing system using a temporal gating scheme,” Proc. SPIE5855, 184–187 (2005).
[CrossRef]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

Jackson, D. A.

Jeong, J. H.

Jeong, J.-M.

Kishi, M.

Lee, K.

Lee, S. B.

Newson, T. P.

Nikles, M.

M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

Robert, P.

M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

Song, K. Y.

J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, and S. B. Lee, “Bidirectional measurement for Brillouin optical correlation domain analysis,” Opt. Express20(10), 11091–11096 (2012).
[CrossRef] [PubMed]

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett.36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, and S. B. Lee, “Variable-frequency lock-in detection for the suppression of beat noise in Brillouin optical correlation domain analysis,” Opt. Express19(19), 18721–18728 (2011).
[CrossRef] [PubMed]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett.19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol.25(5), 1238–1246 (2007).
[CrossRef]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett.18(24), 2653–2655 (2006).
[CrossRef]

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett.18(3), 499–501 (2006).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett.31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Y. Song, Z. He, and K. Hotate, “Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme,” Opt. Express14(10), 4256–4263 (2006).
[CrossRef] [PubMed]

Thévenaz, L.

M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

Webb, D. J.

IEEE Photon. Technol. Lett. (3)

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett.19(23), 1928–1930 (2007).
[CrossRef]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett.18(24), 2653–2655 (2006).
[CrossRef]

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett.18(3), 499–501 (2006).
[CrossRef]

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique - proposal, experiment and simulation,” IEICE Trans. Electron.E83-C, 405–412 (2000).

J. Lightwave Technol. (2)

M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol.15(10), 1842–1851 (1997).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol.25(5), 1238–1246 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (1)

K. Hotate and H. Arai, “Enlargement of measurement range of simplified BOCDA fiber-optic distributed strain sensing system using a temporal gating scheme,” Proc. SPIE5855, 184–187 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Distribution of a pump-probe beat spectrum near a correlation peak (CP) in the BOCDA. (b) Structure of a BOCDA signal composed of a sharp BGS from the CP (red) and a noise structure (blue) from other sections of a fiber under test.

Fig. 2
Fig. 2

(a) Construction of a BOCDA signal (Signal1) with an ordinary pump wave. (b) Construction of a BOCDA signal (Signal2) with a phase-modulated pump wave. (c) Differential measurement by analyzing the difference of Signal1 and Signal2. (d) An RF wave input to the phase modulator for the pump in the differential measurement.

Fig. 3
Fig. 3

Experimental setup for a BOCDA system based on the differential measurement. The inset shows the structure of a 50 m FUT composed of SMF’s and eight sections of DSF with different lengths: SSBM, single-sideband modulator; MSS, microwave sweep synthesizer; PSW, polarization switch; EDFA, Er-doped fiber amplifier; PM, phase modulator; LIA, lock-in amplifier.

Fig. 4
Fig. 4

3D plots of BOCDA signals by (a) an ordinary setup and (b) the differential measurement scheme.

Fig. 5
Fig. 5

(a) Distribution map of νB measured by the ordinary BOCDA. (b)-(f) The BOCDA signal at each section of the DSF (red) plotted together with that of a SMF section (black).

Fig. 6
Fig. 6

(a) Distribution map of νB measured by the BOCDA system based on differential measurement. (b)-(f) The BOCDA signal at each section of the DSF (red) and the SMF (black).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f B (Δx,t)=Δv+2Δfsin(2π f m Δx V g )cos(2π f m (t Δx V g ))
Δ z r = V g Δ ν B 2π f m Δf

Metrics