Abstract

For the calibration of thermal type laser power detectors with slow response time, instability of the input laser significantly contributes to the measurement repeatability. A convolution method is adopted to reduce the impact of source instability. The equivalent incident power is calculated by convolving the real-time power input and the detector impulse-response function (IRF). The value is applied in place of the traditional input power value for the calibration. The IRF is measured using the (1-70) W laser power primary standard at National Institute of Metrology of China. The measurement repeatability of the transfer detector’s responsivity is improved from 1.1% using the traditional method to 0.19% using this method. The systematic errors, primarily due to source drift are also reduced. The proposed method can be applied in the calibration of general thermal type laser power detectors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Li, T. R. Scott, C. L. Cromer, D. Keenan, F. Brandt, and K. Moestl, “Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
    [CrossRef]
  2. P. B. Lukins, “New facility for measurement of laser power and calibration of laser power meters,” in Proceedings of the Sixth Bienni Conference of Metrology Society of Australia, Australian National University, Canberra, October 19–21, 177–180 (2005).
  3. V. S. Ivanov, A. F. Kotyuk, A. A. Liberman, S. A. Moskalyuk, and M. V. Ulanovskii, “The state primary standard for the unit of mean laser power,” Meas. Tech.50(7), 695–699 (2007).
    [CrossRef]
  4. M. Endo and T. Inoue, “A double calorimeter for 10-W level laser power measurements,” in Proceedings of IEEE Conference on Instrumentation and Measurement (IEEE, 2005), 688–691.
  5. N. Miron and D. G. Sporea, “High accuracy laser power measurement In IR and visible region,” Proc. SPIE2321, 175–178 (1994).
    [CrossRef]
  6. S. Kück, F. Brandt, and M. Taddeo, “Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm,” Appl. Opt.44(12), 2258–2265 (2005).
    [CrossRef] [PubMed]
  7. D. J. Livigni, C. L. Cromer, T. R. Scott, B. C. Johnson, and Z. M. Zhang, “Thermal characterization of a cryogenic radiometer and comparison with a laser calorimeter,” Metrologia35(6), 819–827 (1998).
    [CrossRef]
  8. X. Li, T. Scott, S. Yang, C. Cromer, and M. Dowell, “Nonlinearity measurements of high-power laser detectors at NIST,” J. Res. Natl. Inst. Stand. Technol.109(4), 429–434 (2004).
    [CrossRef]
  9. S. Kueck, K. Liegmann, K. Moestl, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE4932, 645–655 (2003).
    [CrossRef]
  10. J. L. Zheng, Q. H. Ying, and W. L. Yang, Signal and System (High Education Press, 2000).

2007

V. S. Ivanov, A. F. Kotyuk, A. A. Liberman, S. A. Moskalyuk, and M. V. Ulanovskii, “The state primary standard for the unit of mean laser power,” Meas. Tech.50(7), 695–699 (2007).
[CrossRef]

2005

2004

X. Li, T. Scott, S. Yang, C. Cromer, and M. Dowell, “Nonlinearity measurements of high-power laser detectors at NIST,” J. Res. Natl. Inst. Stand. Technol.109(4), 429–434 (2004).
[CrossRef]

2003

S. Kueck, K. Liegmann, K. Moestl, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE4932, 645–655 (2003).
[CrossRef]

2000

X. Li, T. R. Scott, C. L. Cromer, D. Keenan, F. Brandt, and K. Moestl, “Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

1998

D. J. Livigni, C. L. Cromer, T. R. Scott, B. C. Johnson, and Z. M. Zhang, “Thermal characterization of a cryogenic radiometer and comparison with a laser calorimeter,” Metrologia35(6), 819–827 (1998).
[CrossRef]

1994

N. Miron and D. G. Sporea, “High accuracy laser power measurement In IR and visible region,” Proc. SPIE2321, 175–178 (1994).
[CrossRef]

Brandt, F.

S. Kück, F. Brandt, and M. Taddeo, “Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm,” Appl. Opt.44(12), 2258–2265 (2005).
[CrossRef] [PubMed]

S. Kueck, K. Liegmann, K. Moestl, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE4932, 645–655 (2003).
[CrossRef]

X. Li, T. R. Scott, C. L. Cromer, D. Keenan, F. Brandt, and K. Moestl, “Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Cromer, C.

X. Li, T. Scott, S. Yang, C. Cromer, and M. Dowell, “Nonlinearity measurements of high-power laser detectors at NIST,” J. Res. Natl. Inst. Stand. Technol.109(4), 429–434 (2004).
[CrossRef]

Cromer, C. L.

X. Li, T. R. Scott, C. L. Cromer, D. Keenan, F. Brandt, and K. Moestl, “Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

D. J. Livigni, C. L. Cromer, T. R. Scott, B. C. Johnson, and Z. M. Zhang, “Thermal characterization of a cryogenic radiometer and comparison with a laser calorimeter,” Metrologia35(6), 819–827 (1998).
[CrossRef]

Dowell, M.

X. Li, T. Scott, S. Yang, C. Cromer, and M. Dowell, “Nonlinearity measurements of high-power laser detectors at NIST,” J. Res. Natl. Inst. Stand. Technol.109(4), 429–434 (2004).
[CrossRef]

Ivanov, V. S.

V. S. Ivanov, A. F. Kotyuk, A. A. Liberman, S. A. Moskalyuk, and M. V. Ulanovskii, “The state primary standard for the unit of mean laser power,” Meas. Tech.50(7), 695–699 (2007).
[CrossRef]

Johnson, B. C.

D. J. Livigni, C. L. Cromer, T. R. Scott, B. C. Johnson, and Z. M. Zhang, “Thermal characterization of a cryogenic radiometer and comparison with a laser calorimeter,” Metrologia35(6), 819–827 (1998).
[CrossRef]

Keenan, D.

X. Li, T. R. Scott, C. L. Cromer, D. Keenan, F. Brandt, and K. Moestl, “Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Kotyuk, A. F.

V. S. Ivanov, A. F. Kotyuk, A. A. Liberman, S. A. Moskalyuk, and M. V. Ulanovskii, “The state primary standard for the unit of mean laser power,” Meas. Tech.50(7), 695–699 (2007).
[CrossRef]

Kück, S.

Kueck, S.

S. Kueck, K. Liegmann, K. Moestl, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE4932, 645–655 (2003).
[CrossRef]

Li, X.

X. Li, T. Scott, S. Yang, C. Cromer, and M. Dowell, “Nonlinearity measurements of high-power laser detectors at NIST,” J. Res. Natl. Inst. Stand. Technol.109(4), 429–434 (2004).
[CrossRef]

X. Li, T. R. Scott, C. L. Cromer, D. Keenan, F. Brandt, and K. Moestl, “Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Liberman, A. A.

V. S. Ivanov, A. F. Kotyuk, A. A. Liberman, S. A. Moskalyuk, and M. V. Ulanovskii, “The state primary standard for the unit of mean laser power,” Meas. Tech.50(7), 695–699 (2007).
[CrossRef]

Liegmann, K.

S. Kueck, K. Liegmann, K. Moestl, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE4932, 645–655 (2003).
[CrossRef]

Livigni, D. J.

D. J. Livigni, C. L. Cromer, T. R. Scott, B. C. Johnson, and Z. M. Zhang, “Thermal characterization of a cryogenic radiometer and comparison with a laser calorimeter,” Metrologia35(6), 819–827 (1998).
[CrossRef]

Metzdorf, J.

S. Kueck, K. Liegmann, K. Moestl, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE4932, 645–655 (2003).
[CrossRef]

Miron, N.

N. Miron and D. G. Sporea, “High accuracy laser power measurement In IR and visible region,” Proc. SPIE2321, 175–178 (1994).
[CrossRef]

Moestl, K.

S. Kueck, K. Liegmann, K. Moestl, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE4932, 645–655 (2003).
[CrossRef]

X. Li, T. R. Scott, C. L. Cromer, D. Keenan, F. Brandt, and K. Moestl, “Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

Moskalyuk, S. A.

V. S. Ivanov, A. F. Kotyuk, A. A. Liberman, S. A. Moskalyuk, and M. V. Ulanovskii, “The state primary standard for the unit of mean laser power,” Meas. Tech.50(7), 695–699 (2007).
[CrossRef]

Scott, T.

X. Li, T. Scott, S. Yang, C. Cromer, and M. Dowell, “Nonlinearity measurements of high-power laser detectors at NIST,” J. Res. Natl. Inst. Stand. Technol.109(4), 429–434 (2004).
[CrossRef]

Scott, T. R.

X. Li, T. R. Scott, C. L. Cromer, D. Keenan, F. Brandt, and K. Moestl, “Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

D. J. Livigni, C. L. Cromer, T. R. Scott, B. C. Johnson, and Z. M. Zhang, “Thermal characterization of a cryogenic radiometer and comparison with a laser calorimeter,” Metrologia35(6), 819–827 (1998).
[CrossRef]

Sporea, D. G.

N. Miron and D. G. Sporea, “High accuracy laser power measurement In IR and visible region,” Proc. SPIE2321, 175–178 (1994).
[CrossRef]

Taddeo, M.

Ulanovskii, M. V.

V. S. Ivanov, A. F. Kotyuk, A. A. Liberman, S. A. Moskalyuk, and M. V. Ulanovskii, “The state primary standard for the unit of mean laser power,” Meas. Tech.50(7), 695–699 (2007).
[CrossRef]

Yang, S.

X. Li, T. Scott, S. Yang, C. Cromer, and M. Dowell, “Nonlinearity measurements of high-power laser detectors at NIST,” J. Res. Natl. Inst. Stand. Technol.109(4), 429–434 (2004).
[CrossRef]

Zhang, Z. M.

D. J. Livigni, C. L. Cromer, T. R. Scott, B. C. Johnson, and Z. M. Zhang, “Thermal characterization of a cryogenic radiometer and comparison with a laser calorimeter,” Metrologia35(6), 819–827 (1998).
[CrossRef]

Appl. Opt.

J. Res. Natl. Inst. Stand. Technol.

X. Li, T. Scott, S. Yang, C. Cromer, and M. Dowell, “Nonlinearity measurements of high-power laser detectors at NIST,” J. Res. Natl. Inst. Stand. Technol.109(4), 429–434 (2004).
[CrossRef]

Meas. Tech.

V. S. Ivanov, A. F. Kotyuk, A. A. Liberman, S. A. Moskalyuk, and M. V. Ulanovskii, “The state primary standard for the unit of mean laser power,” Meas. Tech.50(7), 695–699 (2007).
[CrossRef]

Metrologia

X. Li, T. R. Scott, C. L. Cromer, D. Keenan, F. Brandt, and K. Moestl, “Power measurement standards for high-power lasers: comparison between the NIST and the PTB,” Metrologia37(5), 445–447 (2000).
[CrossRef]

D. J. Livigni, C. L. Cromer, T. R. Scott, B. C. Johnson, and Z. M. Zhang, “Thermal characterization of a cryogenic radiometer and comparison with a laser calorimeter,” Metrologia35(6), 819–827 (1998).
[CrossRef]

Proc. SPIE

N. Miron and D. G. Sporea, “High accuracy laser power measurement In IR and visible region,” Proc. SPIE2321, 175–178 (1994).
[CrossRef]

S. Kueck, K. Liegmann, K. Moestl, F. Brandt, and J. Metzdorf, “Laser radiometry for UV lasers at 193 nm,” Proc. SPIE4932, 645–655 (2003).
[CrossRef]

Other

J. L. Zheng, Q. H. Ying, and W. L. Yang, Signal and System (High Education Press, 2000).

P. B. Lukins, “New facility for measurement of laser power and calibration of laser power meters,” in Proceedings of the Sixth Bienni Conference of Metrology Society of Australia, Australian National University, Canberra, October 19–21, 177–180 (2005).

M. Endo and T. Inoue, “A double calorimeter for 10-W level laser power measurements,” in Proceedings of IEEE Conference on Instrumentation and Measurement (IEEE, 2005), 688–691.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Electrical calibration device for responsivity measurements.

Fig. 2
Fig. 2

The process of IRF measuring, (a) input signal and its FFT, (b) output signal and its FFT, (c) IRF and transfer function

Fig. 3
Fig. 3

IRF results calculated from different H(f)’s with high frequency components cut off to 0.2Hz, 0.3Hz and 0.4Hz.

Fig. 4
Fig. 4

Calibration data by both the traditional method and the convolution method under 532nm laser condition.

Fig. 5
Fig. 5

Results comparison with different algorithms when source power exhibits drift

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S= v( t 1 ) p( t 1 ) ,
v(t)= 0 t h(τ)p(tτ) dτ,
p equi (t)= 0 t h(τ) 0 t 0 h( t ' )d t ' p(tτ) dτ,
S= v(t) p equi (t) ,
H(f)= V(f) P(f) ,
h(t)= [H(f)·exp(i2πft)]df .

Metrics